File size: 5,694 Bytes
f7c0abb
0ca6f76
e7b1f60
fa8e2ce
0ca6f76
256ed7f
f7c0abb
05d6121
f9d8346
0ca6f76
e7b1f60
256ed7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7b1f60
 
b685be0
256ed7f
b685be0
 
465b43c
b685be0
0ca6f76
fa8e2ce
6025f1c
b685be0
6025f1c
256ed7f
e7b1f60
b685be0
 
0ca6f76
b685be0
 
 
 
6025f1c
0ca6f76
b685be0
 
 
 
 
 
 
 
 
 
 
f7c0abb
0ca6f76
 
 
 
b685be0
 
 
f7c0abb
0ca6f76
 
b685be0
 
 
0ca6f76
f7c0abb
b685be0
05d6121
e7b1f60
0ca6f76
b685be0
984a117
e7b1f60
b685be0
 
0ca6f76
b685be0
 
 
256ed7f
fa8e2ce
256ed7f
93c4b1f
7a83ce6
20d0b59
b685be0
256ed7f
b685be0
 
256ed7f
b685be0
256ed7f
b685be0
387e225
256ed7f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import asyncio
from fastapi import FastAPI, HTTPException, Query
from fastapi.responses import StreamingResponse
from openai import AsyncOpenAI
from collections import defaultdict

app = FastAPI()

# Define available models
AVAILABLE_MODELS = {
    "openai/gpt-4.1": "OpenAI GPT-4.1",
    "openai/gpt-4.1-mini": "OpenAI GPT-4.1-mini",
    "openai/gpt-4.1-nano": "OpenAI GPT-4.1-nano",
    "openai/gpt-4o": "OpenAI GPT-4o",
    "openai/gpt-4o-mini": "OpenAI GPT-4o mini",
    "openai/o4-mini": "OpenAI o4-mini",
    "microsoft/MAI-DS-R1": "MAI-DS-R1",
    "microsoft/Phi-3.5-MoE-instruct": "Phi-3.5-MoE instruct (128k)",
    "microsoft/Phi-3.5-mini-instruct": "Phi-3.5-mini instruct (128k)",
    "microsoft/Phi-3.5-vision-instruct": "Phi-3.5-vision instruct (128k)",
    "microsoft/Phi-3-medium-128k-instruct": "Phi-3-medium instruct (128k)",
    "microsoft/Phi-3-medium-4k-instruct": "Phi-3-medium instruct (4k)",
    "microsoft/Phi-3-mini-128k-instruct": "Phi-3-mini instruct (128k)",
    "microsoft/Phi-3-small-128k-instruct": "Phi-3-small instruct (128k)",
    "microsoft/Phi-3-small-8k-instruct": "Phi-3-small instruct (8k)",
    "microsoft/Phi-4": "Phi-4",
    "microsoft/Phi-4-mini-instruct": "Phi-4-mini-instruct",
    "microsoft/Phi-4-multimodal-instruct": "Phi-4-multimodal-instruct",
    "ai21-labs/AI21-Jamba-1.5-Large": "AI21 Jamba 1.5 Large",
    "ai21-labs/AI21-Jamba-1.5-Mini": "AI21 Jamba 1.5 Mini",
    "mistral-ai/Codestral-2501": "Codestral 25.01",
    "cohere/Cohere-command-r": "Cohere Command R",
    "cohere/Cohere-command-r-08-2024": "Cohere Command R 08-2024",
    "cohere/Cohere-command-r-plus": "Cohere Command R+",
    "cohere/Cohere-command-r-plus-08-2024": "Cohere Command R+ 08-2024",
    "deepseek/DeepSeek-R1": "DeepSeek-R1",
    "deepseek/DeepSeek-V3-0324": "DeepSeek-V3-0324",
    "meta/Llama-3.2-11B-Vision-Instruct": "Llama-3.2-11B-Vision-Instruct",
    "meta/Llama-3.2-90B-Vision-Instruct": "Llama-3.2-90B-Vision-Instruct",
    "meta/Llama-3.3-70B-Instruct": "Llama-3.3-70B-Instruct",
    "meta/Llama-4-Maverick-17B-128E-Instruct-FP8": "Llama 4 Maverick 17B 128E Instruct FP8",
    "meta/Llama-4-Scout-17B-16E-Instruct": "Llama 4 Scout 17B 16E Instruct",
    "meta/Meta-Llama-3.1-405B-Instruct": "Meta-Llama-3.1-405B-Instruct",
    "meta/Meta-Llama-3.1-70B-Instruct": "Meta-Llama-3.1-70B-Instruct",
    "meta/Meta-Llama-3.1-8B-Instruct": "Meta-Llama-3.1-8B-Instruct",
    "meta/Meta-Llama-3-70B-Instruct": "Meta-Llama-3-70B-Instruct",
    "meta/Meta-Llama-3-8B-Instruct": "Meta-Llama-3-8B-Instruct",
    "mistral-ai/Ministral-3B": "Ministral 3B",
    "mistral-ai/Mistral-Large-2411": "Mistral Large 24.11",
    "mistral-ai/Mistral-Nemo": "Mistral Nemo",
    "mistral-ai/Mistral-large-2407": "Mistral Large (2407)",
    "mistral-ai/Mistral-small": "Mistral Small",
    "cohere/cohere-command-a": "Cohere Command A",
    "core42/jais-30b-chat": "JAIS 30b Chat",
    "mistral-ai/mistral-small-2503": "Mistral Small 3.1"
}

# In-memory chat history and locks
chat_histories = defaultdict(list)
chat_locks = defaultdict(asyncio.Lock)
MAX_HISTORY = 100

# Streaming AI generation
async def generate_ai_response(chat_id: str, model: str):
    token = os.getenv("GITHUB_TOKEN")
    if not token:
        yield "Error: GitHub token not configured"
        raise HTTPException(status_code=500, detail="GitHub token not configured")

    if model not in AVAILABLE_MODELS:
        yield f"Error: Invalid model {model}"
        raise HTTPException(status_code=400, detail="Invalid model")

    client = AsyncOpenAI(
        base_url="https://models.github.ai/inference",
        api_key=token
    )

    try:
        async with chat_locks[chat_id]:
            stream = await asyncio.wait_for(
                client.chat.completions.create(
                    messages=chat_histories[chat_id],
                    model=model,
                    temperature=1.0,
                    top_p=1.0,
                    stream=True
                ),
                timeout=60
            )

        async for chunk in stream:
            if chunk.choices and chunk.choices[0].delta.content:
                content = chunk.choices[0].delta.content
                yield content
                async with chat_locks[chat_id]:
                    chat_histories[chat_id].append({"role": "assistant", "content": content})
                    chat_histories[chat_id] = chat_histories[chat_id][-MAX_HISTORY:]

    except asyncio.TimeoutError:
        yield "Error: Response timed out."
        raise HTTPException(status_code=504, detail="Timeout")
    except Exception as e:
        yield f"Error: {str(e)}"
        raise HTTPException(status_code=500, detail="AI generation failed")

# POST /generate
@app.post("/generate")
async def generate_response(
    chat_id: str = Query(..., description="Unique chat ID"),
    prompt: str = Query(..., description="User prompt"),
    model: str = Query("openai/gpt-4.1-mini", description="Model to use")
):
    if not prompt.strip():
        raise HTTPException(status_code=400, detail="Prompt is required")

    async with chat_locks[chat_id]:
        chat_histories[chat_id].append({"role": "user", "content": prompt})
        chat_histories[chat_id] = chat_histories[chat_id][-MAX_HISTORY:]

    return StreamingResponse(
        generate_ai_response(chat_id, model),
        media_type="text/event-stream"
    )

# POST /reset
@app.post("/reset")
async def reset_chat(chat_id: str = Query(..., description="Chat ID to reset")):
    async with chat_locks[chat_id]:
        chat_histories[chat_id].clear()
    return {"message": f"Chat history for {chat_id} cleared."}

# For ASGI hosting
def get_app():
    return app