File size: 3,773 Bytes
4d6e8c2
 
 
 
daf1822
 
 
aee4009
4d6e8c2
 
 
 
 
 
daf1822
1c33274
70f5f26
daf1822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d778205
4d6e8c2
 
70f5f26
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70f5f26
d778205
daf1822
 
 
 
 
 
 
 
 
 
d778205
aee4009
daf1822
 
d778205
daf1822
 
 
 
 
 
 
 
 
 
 
 
d778205
daf1822
d778205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d6e8c2
d778205
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
import numpy as np

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

router = APIRouter()

DESCRIPTION = "Climate Disinformation Detection - TF-IDF + LogReg"
ROUTE = "/text"

def create_pipeline():
    """Create an efficient text classification pipeline"""
    return Pipeline([
        ('tfidf', TfidfVectorizer(
            max_features=10000,  # Limit features for efficiency
            ngram_range=(1, 2),  # Use unigrams and bigrams
            stop_words='english',
            min_df=2,  # Remove very rare terms
            max_df=0.95  # Remove very common terms
        )),
        ('classifier', LogisticRegression(
            C=1.0,
            multi_class='multinomial',
            max_iter=200,
            n_jobs=-1  # Use all CPU cores
        ))
    ])

@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    try:
        # Load and prepare the dataset
        dataset = load_dataset(request.dataset_name)
        
        # Convert string labels to integers
        dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
        
        # Split dataset
        train_test = dataset["train"].train_test_split(
            test_size=request.test_size, 
            seed=request.test_seed
        )
        
        train_dataset = train_test["train"]
        test_dataset = train_test["test"]

        # Create and train pipeline
        pipeline = create_pipeline()
        
        # Train the model
        pipeline.fit(
            train_dataset["quote"],
            train_dataset["label"]
        )
        
        # Make predictions
        predictions = pipeline.predict(test_dataset["quote"])
        
        # Get true labels
        true_labels = test_dataset["label"]

        # Stop tracking emissions
        emissions_data = tracker.stop_task()
        
        # Calculate accuracy
        accuracy = accuracy_score(true_labels, predictions)
        
        # Prepare results dictionary
        results = {
            "username": username,
            "space_url": space_url,
            "submission_timestamp": datetime.now().isoformat(),
            "model_description": DESCRIPTION,
            "accuracy": float(accuracy),
            "energy_consumed_wh": emissions_data.energy_consumed * 1000,
            "emissions_gco2eq": emissions_data.emissions * 1000,
            "emissions_data": clean_emissions_data(emissions_data),
            "api_route": ROUTE,
            "dataset_config": {
                "dataset_name": request.dataset_name,
                "test_size": request.test_size,
                "test_seed": request.test_seed
            }
        }
        
        return results
        
    except Exception as e:
        # Stop tracking in case of error
        tracker.stop_task()
        raise e