Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +47 -69
tasks/text.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
from fastapi import APIRouter
|
3 |
from datetime import datetime
|
4 |
from datasets import load_dataset
|
5 |
from sklearn.metrics import accuracy_score
|
6 |
-
import
|
|
|
|
|
7 |
import numpy as np
|
8 |
|
9 |
from .utils.evaluation import TextEvaluationRequest
|
@@ -11,9 +12,27 @@ from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
|
11 |
|
12 |
router = APIRouter()
|
13 |
|
14 |
-
DESCRIPTION = "
|
15 |
ROUTE = "/text"
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
|
18 |
async def evaluate_text(request: TextEvaluationRequest):
|
19 |
"""
|
@@ -34,81 +53,40 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
34 |
"7_fossil_fuels_needed": 7
|
35 |
}
|
36 |
|
37 |
-
# Load and prepare the dataset
|
38 |
-
dataset = load_dataset(request.dataset_name)
|
39 |
-
|
40 |
-
# Convert string labels to integers
|
41 |
-
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
42 |
-
|
43 |
-
# Split dataset
|
44 |
-
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
45 |
-
test_dataset = train_test["test"]
|
46 |
-
|
47 |
# Start tracking emissions
|
48 |
tracker.start()
|
49 |
tracker.start_task("inference")
|
50 |
|
51 |
try:
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
#
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
num_labels=8,
|
63 |
-
problem_type="single_label_classification"
|
64 |
)
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
state_dict = torch.load(local_weights, map_location='cpu')
|
69 |
-
model.load_state_dict(state_dict)
|
70 |
-
except Exception as e:
|
71 |
-
print(f"Error loading weights: {e}")
|
72 |
-
# Continue with base model if weights fail to load
|
73 |
-
pass
|
74 |
-
|
75 |
-
# Move model to appropriate device
|
76 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
77 |
-
model = model.to(device)
|
78 |
-
model.eval() # Set to evaluation mode
|
79 |
-
|
80 |
-
# Get test texts and process in batches
|
81 |
-
test_texts = test_dataset["quote"]
|
82 |
-
predictions = []
|
83 |
-
|
84 |
-
# Process in batches
|
85 |
-
for i in range(0, len(test_texts), BATCH_SIZE):
|
86 |
-
# Clear CUDA cache if using GPU
|
87 |
-
if torch.cuda.is_available():
|
88 |
-
torch.cuda.empty_cache()
|
89 |
-
|
90 |
-
batch_texts = test_texts[i:i + BATCH_SIZE]
|
91 |
-
|
92 |
-
# Tokenize with padding and attention masks
|
93 |
-
inputs = tokenizer(
|
94 |
-
batch_texts,
|
95 |
-
padding=True,
|
96 |
-
truncation=True,
|
97 |
-
max_length=MAX_LENGTH,
|
98 |
-
return_tensors="pt"
|
99 |
-
)
|
100 |
-
|
101 |
-
# Move inputs to device
|
102 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
103 |
-
|
104 |
-
# Run inference with no gradient computation
|
105 |
-
with torch.no_grad():
|
106 |
-
outputs = model(**inputs)
|
107 |
-
batch_preds = torch.argmax(outputs.logits, dim=1)
|
108 |
-
predictions.extend(batch_preds.cpu().numpy())
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
# Get true labels
|
111 |
-
true_labels = test_dataset[
|
112 |
|
113 |
# Stop tracking emissions
|
114 |
emissions_data = tracker.stop_task()
|
|
|
|
|
1 |
from fastapi import APIRouter
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
6 |
+
from sklearn.linear_model import LogisticRegression
|
7 |
+
from sklearn.pipeline import Pipeline
|
8 |
import numpy as np
|
9 |
|
10 |
from .utils.evaluation import TextEvaluationRequest
|
|
|
12 |
|
13 |
router = APIRouter()
|
14 |
|
15 |
+
DESCRIPTION = "Climate Disinformation Detection - TF-IDF + LogReg"
|
16 |
ROUTE = "/text"
|
17 |
|
18 |
+
def create_pipeline():
|
19 |
+
"""Create an efficient text classification pipeline"""
|
20 |
+
return Pipeline([
|
21 |
+
('tfidf', TfidfVectorizer(
|
22 |
+
max_features=10000, # Limit features for efficiency
|
23 |
+
ngram_range=(1, 2), # Use unigrams and bigrams
|
24 |
+
stop_words='english',
|
25 |
+
min_df=2, # Remove very rare terms
|
26 |
+
max_df=0.95 # Remove very common terms
|
27 |
+
)),
|
28 |
+
('classifier', LogisticRegression(
|
29 |
+
C=1.0,
|
30 |
+
multi_class='multinomial',
|
31 |
+
max_iter=200,
|
32 |
+
n_jobs=-1 # Use all CPU cores
|
33 |
+
))
|
34 |
+
])
|
35 |
+
|
36 |
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
|
37 |
async def evaluate_text(request: TextEvaluationRequest):
|
38 |
"""
|
|
|
53 |
"7_fossil_fuels_needed": 7
|
54 |
}
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
# Start tracking emissions
|
57 |
tracker.start()
|
58 |
tracker.start_task("inference")
|
59 |
|
60 |
try:
|
61 |
+
# Load and prepare the dataset
|
62 |
+
dataset = load_dataset(request.dataset_name)
|
63 |
+
|
64 |
+
# Convert string labels to integers
|
65 |
+
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
66 |
+
|
67 |
+
# Split dataset
|
68 |
+
train_test = dataset["train"].train_test_split(
|
69 |
+
test_size=request.test_size,
|
70 |
+
seed=request.test_seed
|
|
|
|
|
71 |
)
|
72 |
|
73 |
+
train_dataset = train_test["train"]
|
74 |
+
test_dataset = train_test["test"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
# Create and train pipeline
|
77 |
+
pipeline = create_pipeline()
|
78 |
+
|
79 |
+
# Train the model
|
80 |
+
pipeline.fit(
|
81 |
+
train_dataset["quote"],
|
82 |
+
train_dataset["label"]
|
83 |
+
)
|
84 |
+
|
85 |
+
# Make predictions
|
86 |
+
predictions = pipeline.predict(test_dataset["quote"])
|
87 |
+
|
88 |
# Get true labels
|
89 |
+
true_labels = test_dataset["label"]
|
90 |
|
91 |
# Stop tracking emissions
|
92 |
emissions_data = tracker.stop_task()
|