File size: 1,364 Bytes
bad6e6b
19d148a
bad6e6b
19d148a
 
bad6e6b
19d148a
bad6e6b
19d148a
 
 
 
 
 
 
 
 
 
 
 
 
bad6e6b
0441f0b
19d148a
bad6e6b
 
 
 
 
 
 
 
19d148a
 
 
 
bad6e6b
05bed8e
19d148a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import gradio as gr
import requests

HF_API_TOKEN = "YOUR_HF_API_TOKEN"
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1"

headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}

def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.content

def generate_video(prompt):
    os.makedirs("frames", exist_ok=True)
    for i in range(10):
        image_bytes = query({"inputs": prompt})
        with open(f"frames/frame_{i:03d}.png", "wb") as f:
            f.write(image_bytes)

    create_video_from_frames("frames", "generated_video.mp4", fps=2)
    return "generated_video.mp4"

def create_video_from_frames(frame_folder, output_path, fps=2):
    import cv2
    images = sorted([img for img in os.listdir(frame_folder) if img.endswith(".png")])
    frame = cv2.imread(os.path.join(frame_folder, images[0]))
    height, width, _ = frame.shape
    video = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
    for img in images:
        video.write(cv2.imread(os.path.join(frame_folder, img)))
    video.release()

iface = gr.Interface(fn=generate_video,
                     inputs=gr.Textbox(lines=3),
                     outputs=gr.Video(),
                     title="Text to Video AI")

if __name__ == "__main__":
    iface.launch()