ZeeAI1 commited on
Commit
19d148a
·
verified ·
1 Parent(s): 0441f0b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -31
app.py CHANGED
@@ -1,47 +1,39 @@
1
  import gradio as gr
2
- from diffusers import StableDiffusionPipeline
3
- import os
4
- import cv2
5
 
6
- # --- Initialize Stable Diffusion pipeline ---
7
- pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1")
8
 
9
- FRAME_FOLDER = "frames"
10
- VIDEO_OUTPUT = "generated_video.mp4"
11
 
12
- # --- Function to generate N frames using AI ---
13
- def generate_frames(prompt, num_frames=10):
14
- os.makedirs(FRAME_FOLDER, exist_ok=True)
15
- for i in range(num_frames):
16
- image = pipe(prompt).images[0]
17
- image.save(f"{FRAME_FOLDER}/frame_{i:03d}.png")
 
 
 
 
 
 
 
18
 
19
- # --- Function to create video from frames ---
20
  def create_video_from_frames(frame_folder, output_path, fps=2):
 
21
  images = sorted([img for img in os.listdir(frame_folder) if img.endswith(".png")])
22
- if not images:
23
- raise ValueError("No frames generated.")
24
  frame = cv2.imread(os.path.join(frame_folder, images[0]))
25
  height, width, _ = frame.shape
26
-
27
  video = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
28
  for img in images:
29
  video.write(cv2.imread(os.path.join(frame_folder, img)))
30
  video.release()
31
 
32
- # --- Main function called by Gradio ---
33
- def generate_video(prompt):
34
- generate_frames(prompt, num_frames=10) # Generate 10 frames
35
- create_video_from_frames(FRAME_FOLDER, VIDEO_OUTPUT, fps=2) # 2 fps
36
- return VIDEO_OUTPUT
37
-
38
- # --- Gradio UI ---
39
- iface = gr.Interface(
40
- fn=generate_video,
41
- inputs=gr.Textbox(lines=3, placeholder="Describe your scene here..."),
42
- outputs=gr.Video(),
43
- title="AI Text-to-Video Generator (No manual assets needed)"
44
- )
45
 
46
  if __name__ == "__main__":
47
- iface.launch()
 
1
  import gradio as gr
2
+ import requests
 
 
3
 
4
+ HF_API_TOKEN = "YOUR_HF_API_TOKEN"
5
+ API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1"
6
 
7
+ headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
 
8
 
9
+ def query(payload):
10
+ response = requests.post(API_URL, headers=headers, json=payload)
11
+ return response.content
12
+
13
+ def generate_video(prompt):
14
+ os.makedirs("frames", exist_ok=True)
15
+ for i in range(10):
16
+ image_bytes = query({"inputs": prompt})
17
+ with open(f"frames/frame_{i:03d}.png", "wb") as f:
18
+ f.write(image_bytes)
19
+
20
+ create_video_from_frames("frames", "generated_video.mp4", fps=2)
21
+ return "generated_video.mp4"
22
 
 
23
  def create_video_from_frames(frame_folder, output_path, fps=2):
24
+ import cv2
25
  images = sorted([img for img in os.listdir(frame_folder) if img.endswith(".png")])
 
 
26
  frame = cv2.imread(os.path.join(frame_folder, images[0]))
27
  height, width, _ = frame.shape
 
28
  video = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
29
  for img in images:
30
  video.write(cv2.imread(os.path.join(frame_folder, img)))
31
  video.release()
32
 
33
+ iface = gr.Interface(fn=generate_video,
34
+ inputs=gr.Textbox(lines=3),
35
+ outputs=gr.Video(),
36
+ title="Text to Video AI")
 
 
 
 
 
 
 
 
 
37
 
38
  if __name__ == "__main__":
39
+ iface.launch()