|
from datasets import load_dataset |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, Seq2SeqTrainer, Seq2SeqTrainingArguments |
|
|
|
model_checkpoint = "google/flan-t5-large" |
|
output_dir = "./finetuned-flan-t5" |
|
|
|
dataset = load_dataset("json", data_files={"train": "train_data.jsonl"}) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) |
|
|
|
def preprocess_function(examples): |
|
inputs = examples["input"] |
|
targets = examples["output"] |
|
model_inputs = tokenizer(inputs, max_length=512, truncation=True) |
|
labels = tokenizer(targets, max_length=128, truncation=True) |
|
model_inputs["labels"] = labels["input_ids"] |
|
return model_inputs |
|
|
|
tokenized_datasets = dataset.map(preprocess_function, batched=True) |
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint) |
|
|
|
training_args = Seq2SeqTrainingArguments( |
|
output_dir=output_dir, |
|
evaluation_strategy="no", |
|
learning_rate=5e-5, |
|
per_device_train_batch_size=2, |
|
num_train_epochs=3, |
|
weight_decay=0.01, |
|
save_total_limit=2, |
|
push_to_hub=False |
|
) |
|
|
|
trainer = Seq2SeqTrainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_datasets["train"] |
|
) |
|
|
|
trainer.train() |
|
|
|
model.save_pretrained(output_dir) |
|
tokenizer.save_pretrained(output_dir) |
|
|