from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, Seq2SeqTrainer, Seq2SeqTrainingArguments model_checkpoint = "google/flan-t5-large" output_dir = "./finetuned-flan-t5" dataset = load_dataset("json", data_files={"train": "train_data.jsonl"}) tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) def preprocess_function(examples): inputs = examples["input"] targets = examples["output"] model_inputs = tokenizer(inputs, max_length=512, truncation=True) labels = tokenizer(targets, max_length=128, truncation=True) model_inputs["labels"] = labels["input_ids"] return model_inputs tokenized_datasets = dataset.map(preprocess_function, batched=True) model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint) training_args = Seq2SeqTrainingArguments( output_dir=output_dir, evaluation_strategy="no", learning_rate=5e-5, per_device_train_batch_size=2, num_train_epochs=3, weight_decay=0.01, save_total_limit=2, push_to_hub=False ) trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"] ) trainer.train() model.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir)