File size: 10,762 Bytes
6495c45 ecaceca 528146d 6495c45 528146d ecaceca e99ed09 ecaceca 943c198 2e87ddf 943c198 ecaceca 2e87ddf 6495c45 2e87ddf 6495c45 ecaceca 6495c45 ecaceca 2e87ddf ecaceca 2e87ddf ecaceca 2e87ddf ecaceca 2e87ddf ecaceca 2e87ddf ecaceca 2e87ddf ecaceca 2e87ddf ecaceca 2e87ddf ecaceca 2e87ddf ecaceca 2e87ddf ecaceca 2e87ddf ecaceca 2e87ddf ecaceca 2e87ddf ecaceca 2e87ddf ecaceca 2e87ddf ecaceca 03fbaa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
from streamlit_webrtc import webrtc_streamer, WebRtcMode
from sentiment_analysis import analyze_sentiment
from product_recommender import ProductRecommender
from objection_handler import ObjectionHandler
from google_sheets import fetch_call_data, store_data_in_sheet
from sentence_transformers import SentenceTransformer
from env_setup import config
import re
import uuid
import pandas as pd
import plotly.express as px
import streamlit as st
import numpy as np
from io import BytesIO
import wave
# Initialize components
# Initialize components
product_recommender = ProductRecommender("recommendations.csv") # Relative path
objection_handler = ObjectionHandler("objections.csv") # Relative path
model = SentenceTransformer('all-MiniLM-L6-v2')
def generate_comprehensive_summary(chunks):
"""
Generate a comprehensive summary from conversation chunks
"""
# Extract full text from chunks
full_text = " ".join([chunk[0] for chunk in chunks])
# Perform basic analysis
total_chunks = len(chunks)
sentiments = [chunk[1] for chunk in chunks]
# Determine overall conversation context
context_keywords = {
'product_inquiry': ['dress', 'product', 'price', 'stock'],
'pricing': ['cost', 'price', 'budget'],
'negotiation': ['installment', 'payment', 'manage']
}
# Detect conversation themes
themes = []
for keyword_type, keywords in context_keywords.items():
if any(keyword.lower() in full_text.lower() for keyword in keywords):
themes.append(keyword_type)
# Basic sentiment analysis
positive_count = sentiments.count('POSITIVE')
negative_count = sentiments.count('NEGATIVE')
neutral_count = sentiments.count('NEUTRAL')
# Key interaction highlights
key_interactions = []
for chunk in chunks:
if any(keyword.lower() in chunk[0].lower() for keyword in ['price', 'dress', 'stock', 'installment']):
key_interactions.append(chunk[0])
# Construct summary
summary = f"Conversation Summary:\n"
# Context and themes
if 'product_inquiry' in themes:
summary += "• Customer initiated a product inquiry about items.\n"
if 'pricing' in themes:
summary += "• Price and budget considerations were discussed.\n"
if 'negotiation' in themes:
summary += "• Customer and seller explored flexible payment options.\n"
# Sentiment insights
summary += f"\nConversation Sentiment:\n"
summary += f"• Positive Interactions: {positive_count}\n"
summary += f"• Negative Interactions: {negative_count}\n"
summary += f"• Neutral Interactions: {neutral_count}\n"
# Key highlights
summary += "\nKey Conversation Points:\n"
for interaction in key_interactions[:3]: # Limit to top 3 key points
summary += f"• {interaction}\n"
# Conversation outcome
if positive_count > negative_count:
summary += "\nOutcome: Constructive and potentially successful interaction."
elif negative_count > positive_count:
summary += "\nOutcome: Interaction may require further follow-up."
else:
summary += "\nOutcome: Neutral interaction with potential for future engagement."
return summary
def is_valid_input(text):
text = text.strip().lower()
if len(text) < 3 or re.match(r'^[a-zA-Z\s]*$', text) is None:
return False
return True
def is_relevant_sentiment(sentiment_score):
return sentiment_score > 0.4
def calculate_overall_sentiment(sentiment_scores):
if sentiment_scores:
average_sentiment = sum(sentiment_scores) / len(sentiment_scores)
overall_sentiment = (
"POSITIVE" if average_sentiment > 0 else
"NEGATIVE" if average_sentiment < 0 else
"NEUTRAL"
)
else:
overall_sentiment = "NEUTRAL"
return overall_sentiment
def handle_objection(text):
query_embedding = model.encode([text])
distances, indices = objection_handler.index.search(query_embedding, 1)
if distances[0][0] < 1.5: # Adjust similarity threshold as needed
responses = objection_handler.handle_objection(text)
return "\n".join(responses) if responses else "No objection response found."
return "No objection response found."
def real_time_analysis():
st.info("Listening... Say 'stop' to end the process.")
def audio_frame_callback(audio_frame):
# Convert audio frame to bytes
audio_bytes = audio_frame.to_ndarray().tobytes()
# Save audio bytes to a temporary WAV file
with BytesIO() as wav_buffer:
with wave.open(wav_buffer, 'wb') as wav_file:
wav_file.setnchannels(1) # Mono audio
wav_file.setsampwidth(2) # 2 bytes for int16
wav_file.setframerate(16000) # Sample rate
wav_file.writeframes(audio_bytes)
# Transcribe the audio
text = transcribe_audio(wav_buffer.getvalue())
if text:
st.write(f"*Recognized Text:* {text}")
# Analyze sentiment
sentiment, score = analyze_sentiment(text)
st.write(f"*Sentiment:* {sentiment} (Score: {score})")
# Handle objection
objection_response = handle_objection(text)
st.write(f"*Objection Response:* {objection_response}")
# Get product recommendation
recommendations = []
if is_valid_input(text) and is_relevant_sentiment(score):
query_embedding = model.encode([text])
distances, indices = product_recommender.index.search(query_embedding, 1)
if distances[0][0] < 1.5: # Similarity threshold
recommendations = product_recommender.get_recommendations(text)
if recommendations:
st.write("*Product Recommendations:*")
for rec in recommendations:
st.write(rec)
return audio_frame
# Start WebRTC audio stream
webrtc_ctx = webrtc_streamer(
key="real-time-audio",
mode=WebRtcMode.SENDONLY,
audio_frame_callback=audio_frame_callback,
media_stream_constraints={"audio": True, "video": False},
)
def transcribe_audio(audio_bytes):
"""Transcribe audio using a speech-to-text model or API."""
# Replace this with your actual speech-to-text implementation
# For now, we'll just return a dummy text
return "This is a placeholder transcription."
def run_app():
st.set_page_config(page_title="Sales Call Assistant", layout="wide")
st.title("AI Sales Call Assistant")
st.sidebar.title("Navigation")
app_mode = st.sidebar.radio("Choose a mode:", ["Real-Time Call Analysis", "Dashboard"])
if app_mode == "Real-Time Call Analysis":
st.header("Real-Time Sales Call Analysis")
real_time_analysis()
elif app_mode == "Dashboard":
st.header("Call Summaries and Sentiment Analysis")
try:
data = fetch_call_data(config["google_sheet_id"])
if data.empty:
st.warning("No data available in the Google Sheet.")
else:
# Sentiment Visualizations
sentiment_counts = data['Sentiment'].value_counts()
# Pie Chart
col1, col2 = st.columns(2)
with col1:
st.subheader("Sentiment Distribution")
fig_pie = px.pie(
values=sentiment_counts.values,
names=sentiment_counts.index,
title='Call Sentiment Breakdown',
color_discrete_map={
'POSITIVE': 'green',
'NEGATIVE': 'red',
'NEUTRAL': 'blue'
}
)
st.plotly_chart(fig_pie)
# Bar Chart
with col2:
st.subheader("Sentiment Counts")
fig_bar = px.bar(
x=sentiment_counts.index,
y=sentiment_counts.values,
title='Number of Calls by Sentiment',
labels={'x': 'Sentiment', 'y': 'Number of Calls'},
color=sentiment_counts.index,
color_discrete_map={
'POSITIVE': 'green',
'NEGATIVE': 'red',
'NEUTRAL': 'blue'
}
)
st.plotly_chart(fig_bar)
# Existing Call Details Section
st.subheader("All Calls")
display_data = data.copy()
display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])
# Dropdown to select Call ID
unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)
# Display selected Call ID details
call_details = data[data['Call ID'] == call_id]
if not call_details.empty:
st.subheader("Detailed Call Information")
st.write(f"**Call ID:** {call_id}")
st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")
# Expand summary section
st.subheader("Full Call Summary")
st.text_area("Summary:",
value=call_details.iloc[0]['Summary'],
height=200,
disabled=True)
# Show all chunks for the selected call
st.subheader("Conversation Chunks")
for _, row in call_details.iterrows():
if pd.notna(row['Chunk']):
st.write(f"**Chunk:** {row['Chunk']}")
st.write(f"**Sentiment:** {row['Sentiment']}")
st.write("---") # Separator between chunks
else:
st.error("No details available for the selected Call ID.")
except Exception as e:
st.error(f"Error loading dashboard: {e}")
if __name__ == "__main__":
run_app() |