Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
import
|
|
|
2 |
from sentiment_analysis import analyze_sentiment
|
3 |
from product_recommender import ProductRecommender
|
4 |
from objection_handler import ObjectionHandler
|
@@ -7,127 +8,75 @@ from sentence_transformers import SentenceTransformer
|
|
7 |
from env_setup import config
|
8 |
import re
|
9 |
import uuid
|
10 |
-
from google.oauth2 import service_account
|
11 |
-
from googleapiclient.discovery import build
|
12 |
import pandas as pd
|
13 |
import plotly.express as px
|
14 |
-
import plotly.graph_objs as go
|
15 |
import streamlit as st
|
16 |
|
17 |
-
|
18 |
# Initialize components
|
19 |
objection_handler = ObjectionHandler('objections.csv')
|
20 |
product_recommender = ProductRecommender('recommendations.csv')
|
21 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
22 |
-
|
23 |
-
def numpy_to_audio_data(audio_data):
|
24 |
-
"""
|
25 |
-
Convert NumPy array to AudioData for speech_recognition
|
26 |
-
"""
|
27 |
-
# Convert float32 to int16
|
28 |
-
int_audio = (audio_data * 32767).astype(np.int16)
|
29 |
-
|
30 |
-
# Create AudioData object
|
31 |
-
recognizer = sr.Recognizer()
|
32 |
-
audio_data = sr.AudioData(
|
33 |
-
int_audio.tobytes(),
|
34 |
-
sample_rate=16000,
|
35 |
-
sample_width=int_audio.dtype.itemsize
|
36 |
-
)
|
37 |
-
return audio_data
|
38 |
|
39 |
def real_time_analysis():
|
40 |
-
st.info("
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
st.warning(f"Could not detect microphones: {e}")
|
48 |
|
49 |
try:
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
58 |
continue
|
59 |
|
60 |
-
|
61 |
-
# Fallback to text input if no microphone works
|
62 |
-
st.warning("No microphone available. Switching to text input.")
|
63 |
-
text_input = st.text_input("Enter conversation text:")
|
64 |
-
if text_input:
|
65 |
-
sentiment, score = analyze_sentiment(text_input)
|
66 |
-
st.write(f"*Recognized Text:* {text_input}")
|
67 |
-
st.write(f"*Sentiment:* {sentiment} (Score: {score})")
|
68 |
-
return
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
total_text = ""
|
74 |
|
75 |
-
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
# Handle objection
|
99 |
-
objection_response = handle_objection(text)
|
100 |
-
|
101 |
-
# Get product recommendation
|
102 |
-
recommendations = []
|
103 |
-
if is_valid_input(text) and is_relevant_sentiment(score):
|
104 |
-
query_embedding = model.encode([text])
|
105 |
-
distances, indices = product_recommender.index.search(query_embedding, 1)
|
106 |
-
|
107 |
-
if distances[0][0] < 1.5: # Similarity threshold
|
108 |
-
recommendations = product_recommender.get_recommendations(text)
|
109 |
-
|
110 |
-
transcribed_chunks.append((text, sentiment, score))
|
111 |
-
|
112 |
-
st.write(f"*Sentiment:* {sentiment} (Score: {score})")
|
113 |
-
st.write(f"*Objection Response:* {objection_response}")
|
114 |
-
|
115 |
-
if recommendations:
|
116 |
-
st.write("*Product Recommendations:*")
|
117 |
-
for rec in recommendations:
|
118 |
-
st.write(rec)
|
119 |
-
|
120 |
-
except sr.UnknownValueError:
|
121 |
-
st.error("Speech Recognition could not understand the audio.")
|
122 |
-
except sr.RequestError as e:
|
123 |
-
st.error(f"Error with the Speech Recognition service: {e}")
|
124 |
-
except Exception as e:
|
125 |
-
st.error(f"Error during processing: {e}")
|
126 |
|
127 |
# After conversation ends, calculate and display overall sentiment and summary
|
128 |
overall_sentiment = calculate_overall_sentiment(sentiment_scores)
|
129 |
call_summary = generate_comprehensive_summary(transcribed_chunks)
|
130 |
-
|
131 |
st.subheader("Conversation Summary:")
|
132 |
st.write(total_text.strip())
|
133 |
st.subheader("Overall Sentiment:")
|
@@ -135,86 +84,84 @@ def real_time_analysis():
|
|
135 |
|
136 |
# Store data in Google Sheets
|
137 |
store_data_in_sheet(
|
138 |
-
config["google_sheet_id"],
|
139 |
-
transcribed_chunks,
|
140 |
-
call_summary,
|
141 |
overall_sentiment
|
142 |
)
|
143 |
st.success("Conversation data stored successfully in Google Sheets!")
|
144 |
|
145 |
except Exception as e:
|
146 |
st.error(f"Error in real-time analysis: {e}")
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
def generate_comprehensive_summary(chunks):
|
150 |
-
"""
|
151 |
-
Generate a comprehensive summary from conversation chunks
|
152 |
-
"""
|
153 |
-
# Extract full text from chunks
|
154 |
full_text = " ".join([chunk[0] for chunk in chunks])
|
155 |
-
|
156 |
-
# Perform basic analysis
|
157 |
total_chunks = len(chunks)
|
158 |
sentiments = [chunk[1] for chunk in chunks]
|
159 |
-
|
160 |
-
# Determine overall conversation context
|
161 |
context_keywords = {
|
162 |
'product_inquiry': ['dress', 'product', 'price', 'stock'],
|
163 |
'pricing': ['cost', 'price', 'budget'],
|
164 |
'negotiation': ['installment', 'payment', 'manage']
|
165 |
}
|
166 |
-
|
167 |
-
# Detect conversation themes
|
168 |
themes = []
|
169 |
for keyword_type, keywords in context_keywords.items():
|
170 |
if any(keyword.lower() in full_text.lower() for keyword in keywords):
|
171 |
themes.append(keyword_type)
|
172 |
-
|
173 |
-
# Basic sentiment analysis
|
174 |
positive_count = sentiments.count('POSITIVE')
|
175 |
negative_count = sentiments.count('NEGATIVE')
|
176 |
neutral_count = sentiments.count('NEUTRAL')
|
177 |
-
|
178 |
-
# Key interaction highlights
|
179 |
key_interactions = []
|
180 |
for chunk in chunks:
|
181 |
if any(keyword.lower() in chunk[0].lower() for keyword in ['price', 'dress', 'stock', 'installment']):
|
182 |
key_interactions.append(chunk[0])
|
183 |
-
|
184 |
-
# Construct summary
|
185 |
summary = f"Conversation Summary:\n"
|
186 |
-
|
187 |
-
# Context and themes
|
188 |
if 'product_inquiry' in themes:
|
189 |
summary += "• Customer initiated a product inquiry about items.\n"
|
190 |
-
|
191 |
if 'pricing' in themes:
|
192 |
summary += "• Price and budget considerations were discussed.\n"
|
193 |
-
|
194 |
if 'negotiation' in themes:
|
195 |
summary += "• Customer and seller explored flexible payment options.\n"
|
196 |
-
|
197 |
-
# Sentiment insights
|
198 |
summary += f"\nConversation Sentiment:\n"
|
199 |
summary += f"• Positive Interactions: {positive_count}\n"
|
200 |
summary += f"• Negative Interactions: {negative_count}\n"
|
201 |
summary += f"• Neutral Interactions: {neutral_count}\n"
|
202 |
-
|
203 |
-
# Key highlights
|
204 |
summary += "\nKey Conversation Points:\n"
|
205 |
-
for interaction in key_interactions[:3]:
|
206 |
summary += f"• {interaction}\n"
|
207 |
-
|
208 |
-
# Conversation outcome
|
209 |
if positive_count > negative_count:
|
210 |
summary += "\nOutcome: Constructive and potentially successful interaction."
|
211 |
elif negative_count > positive_count:
|
212 |
summary += "\nOutcome: Interaction may require further follow-up."
|
213 |
else:
|
214 |
summary += "\nOutcome: Neutral interaction with potential for future engagement."
|
215 |
-
|
216 |
-
return summary
|
217 |
|
|
|
218 |
|
219 |
def is_valid_input(text):
|
220 |
text = text.strip().lower()
|
@@ -245,7 +192,6 @@ def handle_objection(text):
|
|
245 |
return "\n".join(responses) if responses else "No objection response found."
|
246 |
return "No objection response found."
|
247 |
|
248 |
-
|
249 |
def run_app():
|
250 |
st.set_page_config(page_title="Sales Call Assistant", layout="wide")
|
251 |
st.title("AI Sales Call Assistant")
|
@@ -265,77 +211,69 @@ def run_app():
|
|
265 |
if data.empty:
|
266 |
st.warning("No data available in the Google Sheet.")
|
267 |
else:
|
268 |
-
# Sentiment Visualizations
|
269 |
sentiment_counts = data['Sentiment'].value_counts()
|
270 |
-
|
271 |
-
# Pie Chart
|
272 |
col1, col2 = st.columns(2)
|
273 |
with col1:
|
274 |
st.subheader("Sentiment Distribution")
|
275 |
fig_pie = px.pie(
|
276 |
-
values=sentiment_counts.values,
|
277 |
-
names=sentiment_counts.index,
|
278 |
title='Call Sentiment Breakdown',
|
279 |
color_discrete_map={
|
280 |
-
'POSITIVE': 'green',
|
281 |
-
'NEGATIVE': 'red',
|
282 |
'NEUTRAL': 'blue'
|
283 |
}
|
284 |
)
|
285 |
st.plotly_chart(fig_pie)
|
286 |
|
287 |
-
# Bar Chart
|
288 |
with col2:
|
289 |
st.subheader("Sentiment Counts")
|
290 |
fig_bar = px.bar(
|
291 |
-
x=sentiment_counts.index,
|
292 |
-
y=sentiment_counts.values,
|
293 |
title='Number of Calls by Sentiment',
|
294 |
labels={'x': 'Sentiment', 'y': 'Number of Calls'},
|
295 |
color=sentiment_counts.index,
|
296 |
color_discrete_map={
|
297 |
-
'POSITIVE': 'green',
|
298 |
-
'NEGATIVE': 'red',
|
299 |
'NEUTRAL': 'blue'
|
300 |
}
|
301 |
)
|
302 |
st.plotly_chart(fig_bar)
|
303 |
|
304 |
-
# Existing Call Details Section
|
305 |
st.subheader("All Calls")
|
306 |
display_data = data.copy()
|
307 |
display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
|
308 |
st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])
|
309 |
|
310 |
-
# Dropdown to select Call ID
|
311 |
unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
|
312 |
call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)
|
313 |
|
314 |
-
# Display selected Call ID details
|
315 |
call_details = data[data['Call ID'] == call_id]
|
316 |
if not call_details.empty:
|
317 |
st.subheader("Detailed Call Information")
|
318 |
st.write(f"**Call ID:** {call_id}")
|
319 |
st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")
|
320 |
-
|
321 |
-
# Expand summary section
|
322 |
st.subheader("Full Call Summary")
|
323 |
-
st.text_area("Summary:",
|
324 |
-
value=call_details.iloc[0]['Summary'],
|
325 |
-
height=200,
|
326 |
disabled=True)
|
327 |
-
|
328 |
-
# Show all chunks for the selected call
|
329 |
st.subheader("Conversation Chunks")
|
330 |
for _, row in call_details.iterrows():
|
331 |
-
if pd.notna(row['Chunk']):
|
332 |
st.write(f"**Chunk:** {row['Chunk']}")
|
333 |
st.write(f"**Sentiment:** {row['Sentiment']}")
|
334 |
-
st.write("---")
|
335 |
else:
|
336 |
st.error("No details available for the selected Call ID.")
|
337 |
except Exception as e:
|
338 |
st.error(f"Error loading dashboard: {e}")
|
339 |
|
340 |
if __name__ == "__main__":
|
341 |
-
run_app()
|
|
|
1 |
+
import sounddevice as sd
|
2 |
+
import numpy as np
|
3 |
from sentiment_analysis import analyze_sentiment
|
4 |
from product_recommender import ProductRecommender
|
5 |
from objection_handler import ObjectionHandler
|
|
|
8 |
from env_setup import config
|
9 |
import re
|
10 |
import uuid
|
|
|
|
|
11 |
import pandas as pd
|
12 |
import plotly.express as px
|
|
|
13 |
import streamlit as st
|
14 |
|
|
|
15 |
# Initialize components
|
16 |
objection_handler = ObjectionHandler('objections.csv')
|
17 |
product_recommender = ProductRecommender('recommendations.csv')
|
18 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def real_time_analysis():
|
21 |
+
st.info("Listening... Say 'stop' to end the process.")
|
22 |
|
23 |
+
samplerate = 16000 # Sample rate for audio capture
|
24 |
+
duration = 5 # Duration of each audio chunk in seconds
|
25 |
+
sentiment_scores = []
|
26 |
+
transcribed_chunks = []
|
27 |
+
total_text = ""
|
|
|
28 |
|
29 |
try:
|
30 |
+
while True:
|
31 |
+
# Capture audio
|
32 |
+
audio_data = sd.rec(int(samplerate * duration), samplerate=samplerate, channels=1, dtype='float32')
|
33 |
+
sd.wait() # Wait for the recording to finish
|
34 |
+
|
35 |
+
# Convert audio data to bytes for processing
|
36 |
+
audio_bytes = (audio_data * 32767).astype(np.int16).tobytes()
|
37 |
+
|
38 |
+
# Analyze the audio
|
39 |
+
text = analyze_audio(audio_bytes, samplerate)
|
40 |
+
if not text:
|
41 |
continue
|
42 |
|
43 |
+
st.write(f"*Recognized Text:* {text}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
if 'stop' in text.lower():
|
46 |
+
st.write("Stopping real-time analysis...")
|
47 |
+
break
|
|
|
48 |
|
49 |
+
# Append to the total conversation
|
50 |
+
total_text += text + " "
|
51 |
+
sentiment, score = analyze_sentiment(text)
|
52 |
+
sentiment_scores.append(score)
|
53 |
|
54 |
+
# Handle objection
|
55 |
+
objection_response = handle_objection(text)
|
56 |
+
|
57 |
+
# Get product recommendation
|
58 |
+
recommendations = []
|
59 |
+
if is_valid_input(text) and is_relevant_sentiment(score):
|
60 |
+
query_embedding = model.encode([text])
|
61 |
+
distances, indices = product_recommender.index.search(query_embedding, 1)
|
62 |
+
|
63 |
+
if distances[0][0] < 1.5: # Similarity threshold
|
64 |
+
recommendations = product_recommender.get_recommendations(text)
|
65 |
+
|
66 |
+
transcribed_chunks.append((text, sentiment, score))
|
67 |
+
|
68 |
+
st.write(f"*Sentiment:* {sentiment} (Score: {score})")
|
69 |
+
st.write(f"*Objection Response:* {objection_response}")
|
70 |
+
|
71 |
+
if recommendations:
|
72 |
+
st.write("*Product Recommendations:*")
|
73 |
+
for rec in recommendations:
|
74 |
+
st.write(rec)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
# After conversation ends, calculate and display overall sentiment and summary
|
77 |
overall_sentiment = calculate_overall_sentiment(sentiment_scores)
|
78 |
call_summary = generate_comprehensive_summary(transcribed_chunks)
|
79 |
+
|
80 |
st.subheader("Conversation Summary:")
|
81 |
st.write(total_text.strip())
|
82 |
st.subheader("Overall Sentiment:")
|
|
|
84 |
|
85 |
# Store data in Google Sheets
|
86 |
store_data_in_sheet(
|
87 |
+
config["google_sheet_id"],
|
88 |
+
transcribed_chunks,
|
89 |
+
call_summary,
|
90 |
overall_sentiment
|
91 |
)
|
92 |
st.success("Conversation data stored successfully in Google Sheets!")
|
93 |
|
94 |
except Exception as e:
|
95 |
st.error(f"Error in real-time analysis: {e}")
|
96 |
+
|
97 |
+
def analyze_audio(audio_bytes, samplerate):
|
98 |
+
"""Analyze audio data and return transcribed text."""
|
99 |
+
try:
|
100 |
+
# Use a speech-to-text model or API to transcribe the audio
|
101 |
+
# For simplicity, we'll use a placeholder function
|
102 |
+
text = transcribe_audio(audio_bytes, samplerate)
|
103 |
+
return text
|
104 |
+
except Exception as e:
|
105 |
+
st.error(f"Error analyzing audio: {e}")
|
106 |
+
return None
|
107 |
+
|
108 |
+
def transcribe_audio(audio_bytes, samplerate):
|
109 |
+
"""Placeholder function for transcribing audio."""
|
110 |
+
# Replace this with your actual speech-to-text implementation
|
111 |
+
# For now, we'll just return a dummy text
|
112 |
+
return "This is a placeholder transcription."
|
113 |
|
114 |
def generate_comprehensive_summary(chunks):
|
115 |
+
"""Generate a comprehensive summary from conversation chunks."""
|
|
|
|
|
|
|
116 |
full_text = " ".join([chunk[0] for chunk in chunks])
|
|
|
|
|
117 |
total_chunks = len(chunks)
|
118 |
sentiments = [chunk[1] for chunk in chunks]
|
119 |
+
|
|
|
120 |
context_keywords = {
|
121 |
'product_inquiry': ['dress', 'product', 'price', 'stock'],
|
122 |
'pricing': ['cost', 'price', 'budget'],
|
123 |
'negotiation': ['installment', 'payment', 'manage']
|
124 |
}
|
125 |
+
|
|
|
126 |
themes = []
|
127 |
for keyword_type, keywords in context_keywords.items():
|
128 |
if any(keyword.lower() in full_text.lower() for keyword in keywords):
|
129 |
themes.append(keyword_type)
|
130 |
+
|
|
|
131 |
positive_count = sentiments.count('POSITIVE')
|
132 |
negative_count = sentiments.count('NEGATIVE')
|
133 |
neutral_count = sentiments.count('NEUTRAL')
|
134 |
+
|
|
|
135 |
key_interactions = []
|
136 |
for chunk in chunks:
|
137 |
if any(keyword.lower() in chunk[0].lower() for keyword in ['price', 'dress', 'stock', 'installment']):
|
138 |
key_interactions.append(chunk[0])
|
139 |
+
|
|
|
140 |
summary = f"Conversation Summary:\n"
|
|
|
|
|
141 |
if 'product_inquiry' in themes:
|
142 |
summary += "• Customer initiated a product inquiry about items.\n"
|
|
|
143 |
if 'pricing' in themes:
|
144 |
summary += "• Price and budget considerations were discussed.\n"
|
|
|
145 |
if 'negotiation' in themes:
|
146 |
summary += "• Customer and seller explored flexible payment options.\n"
|
147 |
+
|
|
|
148 |
summary += f"\nConversation Sentiment:\n"
|
149 |
summary += f"• Positive Interactions: {positive_count}\n"
|
150 |
summary += f"• Negative Interactions: {negative_count}\n"
|
151 |
summary += f"• Neutral Interactions: {neutral_count}\n"
|
152 |
+
|
|
|
153 |
summary += "\nKey Conversation Points:\n"
|
154 |
+
for interaction in key_interactions[:3]:
|
155 |
summary += f"• {interaction}\n"
|
156 |
+
|
|
|
157 |
if positive_count > negative_count:
|
158 |
summary += "\nOutcome: Constructive and potentially successful interaction."
|
159 |
elif negative_count > positive_count:
|
160 |
summary += "\nOutcome: Interaction may require further follow-up."
|
161 |
else:
|
162 |
summary += "\nOutcome: Neutral interaction with potential for future engagement."
|
|
|
|
|
163 |
|
164 |
+
return summary
|
165 |
|
166 |
def is_valid_input(text):
|
167 |
text = text.strip().lower()
|
|
|
192 |
return "\n".join(responses) if responses else "No objection response found."
|
193 |
return "No objection response found."
|
194 |
|
|
|
195 |
def run_app():
|
196 |
st.set_page_config(page_title="Sales Call Assistant", layout="wide")
|
197 |
st.title("AI Sales Call Assistant")
|
|
|
211 |
if data.empty:
|
212 |
st.warning("No data available in the Google Sheet.")
|
213 |
else:
|
|
|
214 |
sentiment_counts = data['Sentiment'].value_counts()
|
215 |
+
|
|
|
216 |
col1, col2 = st.columns(2)
|
217 |
with col1:
|
218 |
st.subheader("Sentiment Distribution")
|
219 |
fig_pie = px.pie(
|
220 |
+
values=sentiment_counts.values,
|
221 |
+
names=sentiment_counts.index,
|
222 |
title='Call Sentiment Breakdown',
|
223 |
color_discrete_map={
|
224 |
+
'POSITIVE': 'green',
|
225 |
+
'NEGATIVE': 'red',
|
226 |
'NEUTRAL': 'blue'
|
227 |
}
|
228 |
)
|
229 |
st.plotly_chart(fig_pie)
|
230 |
|
|
|
231 |
with col2:
|
232 |
st.subheader("Sentiment Counts")
|
233 |
fig_bar = px.bar(
|
234 |
+
x=sentiment_counts.index,
|
235 |
+
y=sentiment_counts.values,
|
236 |
title='Number of Calls by Sentiment',
|
237 |
labels={'x': 'Sentiment', 'y': 'Number of Calls'},
|
238 |
color=sentiment_counts.index,
|
239 |
color_discrete_map={
|
240 |
+
'POSITIVE': 'green',
|
241 |
+
'NEGATIVE': 'red',
|
242 |
'NEUTRAL': 'blue'
|
243 |
}
|
244 |
)
|
245 |
st.plotly_chart(fig_bar)
|
246 |
|
|
|
247 |
st.subheader("All Calls")
|
248 |
display_data = data.copy()
|
249 |
display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
|
250 |
st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])
|
251 |
|
|
|
252 |
unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
|
253 |
call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)
|
254 |
|
|
|
255 |
call_details = data[data['Call ID'] == call_id]
|
256 |
if not call_details.empty:
|
257 |
st.subheader("Detailed Call Information")
|
258 |
st.write(f"**Call ID:** {call_id}")
|
259 |
st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")
|
260 |
+
|
|
|
261 |
st.subheader("Full Call Summary")
|
262 |
+
st.text_area("Summary:",
|
263 |
+
value=call_details.iloc[0]['Summary'],
|
264 |
+
height=200,
|
265 |
disabled=True)
|
266 |
+
|
|
|
267 |
st.subheader("Conversation Chunks")
|
268 |
for _, row in call_details.iterrows():
|
269 |
+
if pd.notna(row['Chunk']):
|
270 |
st.write(f"**Chunk:** {row['Chunk']}")
|
271 |
st.write(f"**Sentiment:** {row['Sentiment']}")
|
272 |
+
st.write("---")
|
273 |
else:
|
274 |
st.error("No details available for the selected Call ID.")
|
275 |
except Exception as e:
|
276 |
st.error(f"Error loading dashboard: {e}")
|
277 |
|
278 |
if __name__ == "__main__":
|
279 |
+
run_app()
|