File size: 11,411 Bytes
2ab4df4 ecaceca 528146d f72cf2b 528146d ecaceca 3d4c19c ecaceca 943c198 bf89d68 f72cf2b bf89d68 943c198 03fbaa1 248ac9a 943c198 bf89d68 f72cf2b bf89d68 f72cf2b f741659 f72cf2b 03fbaa1 2ab4df4 943c198 03fbaa1 943c198 03fbaa1 943c198 03fbaa1 f741659 ecaceca 03fbaa1 ecaceca 03fbaa1 ecaceca 03fbaa1 ecaceca 03fbaa1 ecaceca 03fbaa1 ecaceca 03fbaa1 ecaceca 03fbaa1 ecaceca 03fbaa1 ecaceca 03fbaa1 ecaceca 03fbaa1 ecaceca 03fbaa1 943c198 ecaceca 03fbaa1 ecaceca 03fbaa1 ecaceca 03fbaa1 ecaceca 03fbaa1 ecaceca 03fbaa1 ecaceca 03fbaa1 ecaceca 03fbaa1 ecaceca 03fbaa1 ecaceca 03fbaa1 ecaceca 03fbaa1 ecaceca 03fbaa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import speech_recognition as sr
from sentiment_analysis import analyze_sentiment
from product_recommender import ProductRecommender
from objection_handler import ObjectionHandler
from google_sheets import fetch_call_data, store_data_in_sheet
from sentence_transformers import SentenceTransformer
from env_setup import config
import re
import uuid
import pandas as pd
import plotly.express as px
import streamlit as st
import pyaudio
# Initialize components
objection_handler = ObjectionHandler('objections.csv')
product_recommender = ProductRecommender('recommendations.csv')
model = SentenceTransformer('all-MiniLM-L6-v2')
def list_audio_devices():
"""List available audio input devices using pyaudio."""
p = pyaudio.PyAudio()
devices = []
for i in range(p.get_device_count()):
device_info = p.get_device_info_by_index(i)
if device_info["maxInputChannels"] > 0: # Check if it's an input device
devices.append(device_info)
return devices
def real_time_analysis():
st.info("Listening... Say 'stop' to end the process.")
try:
# List available audio devices
devices = list_audio_devices()
st.write("Available audio devices:")
for device in devices:
st.write(f"Device {device['index']}: {device['name']} (Input Channels: {device['maxInputChannels']})")
if not devices:
st.error("No audio input devices found. Please check the virtual microphone setup.")
return
# Use the first available input device
device_index = devices[0]["index"]
st.write(f"Using device index {device_index}: {devices[0]['name']}")
recognizer = sr.Recognizer()
mic = sr.Microphone(device_index=device_index)
while True:
with mic as source:
st.write("Listening...")
recognizer.adjust_for_ambient_noise(source)
audio = recognizer.listen(source)
try:
st.write("Recognizing...")
text = recognizer.recognize_google(audio)
st.write(f"*Recognized Text:* {text}")
if 'stop' in text.lower():
st.write("Stopping real-time analysis...")
break
# Append to the total conversation
total_text += text + " "
sentiment, score = analyze_sentiment(text)
sentiment_scores.append(score)
# Handle objection
objection_response = handle_objection(text)
# Get product recommendation
recommendations = []
if is_valid_input(text) and is_relevant_sentiment(score):
query_embedding = model.encode([text])
distances, indices = product_recommender.index.search(query_embedding, 1)
if distances[0][0] < 1.5: # Similarity threshold
recommendations = product_recommender.get_recommendations(text)
transcribed_chunks.append((text, sentiment, score))
st.write(f"*Sentiment:* {sentiment} (Score: {score})")
st.write(f"*Objection Response:* {objection_response}")
if recommendations:
st.write("*Product Recommendations:*")
for rec in recommendations:
st.write(rec)
except sr.UnknownValueError:
st.error("Speech Recognition could not understand the audio.")
except sr.RequestError as e:
st.error(f"Error with the Speech Recognition service: {e}")
except Exception as e:
st.error(f"Error during processing: {e}")
# After conversation ends, calculate and display overall sentiment and summary
overall_sentiment = calculate_overall_sentiment(sentiment_scores)
call_summary = generate_comprehensive_summary(transcribed_chunks)
st.subheader("Conversation Summary:")
st.write(total_text.strip())
st.subheader("Overall Sentiment:")
st.write(overall_sentiment)
# Store data in Google Sheets
store_data_in_sheet(
config["google_sheet_id"],
transcribed_chunks,
call_summary,
overall_sentiment
)
st.success("Conversation data stored successfully in Google Sheets!")
except Exception as e:
st.error(f"Error in real-time analysis: {e}")
def generate_comprehensive_summary(chunks):
"""Generate a comprehensive summary from conversation chunks."""
full_text = " ".join([chunk[0] for chunk in chunks])
total_chunks = len(chunks)
sentiments = [chunk[1] for chunk in chunks]
context_keywords = {
'product_inquiry': ['dress', 'product', 'price', 'stock'],
'pricing': ['cost', 'price', 'budget'],
'negotiation': ['installment', 'payment', 'manage']
}
themes = []
for keyword_type, keywords in context_keywords.items():
if any(keyword.lower() in full_text.lower() for keyword in keywords):
themes.append(keyword_type)
positive_count = sentiments.count('POSITIVE')
negative_count = sentiments.count('NEGATIVE')
neutral_count = sentiments.count('NEUTRAL')
key_interactions = []
for chunk in chunks:
if any(keyword.lower() in chunk[0].lower() for keyword in ['price', 'dress', 'stock', 'installment']):
key_interactions.append(chunk[0])
summary = f"Conversation Summary:\n"
if 'product_inquiry' in themes:
summary += "• Customer initiated a product inquiry about items.\n"
if 'pricing' in themes:
summary += "• Price and budget considerations were discussed.\n"
if 'negotiation' in themes:
summary += "• Customer and seller explored flexible payment options.\n"
summary += f"\nConversation Sentiment:\n"
summary += f"• Positive Interactions: {positive_count}\n"
summary += f"• Negative Interactions: {negative_count}\n"
summary += f"• Neutral Interactions: {neutral_count}\n"
summary += "\nKey Conversation Points:\n"
for interaction in key_interactions[:3]:
summary += f"• {interaction}\n"
if positive_count > negative_count:
summary += "\nOutcome: Constructive and potentially successful interaction."
elif negative_count > positive_count:
summary += "\nOutcome: Interaction may require further follow-up."
else:
summary += "\nOutcome: Neutral interaction with potential for future engagement."
return summary
def is_valid_input(text):
text = text.strip().lower()
if len(text) < 3 or re.match(r'^[a-zA-Z\s]*$', text) is None:
return False
return True
def is_relevant_sentiment(sentiment_score):
return sentiment_score > 0.4
def calculate_overall_sentiment(sentiment_scores):
if sentiment_scores:
average_sentiment = sum(sentiment_scores) / len(sentiment_scores)
overall_sentiment = (
"POSITIVE" if average_sentiment > 0 else
"NEGATIVE" if average_sentiment < 0 else
"NEUTRAL"
)
else:
overall_sentiment = "NEUTRAL"
return overall_sentiment
def handle_objection(text):
query_embedding = model.encode([text])
distances, indices = objection_handler.index.search(query_embedding, 1)
if distances[0][0] < 1.5: # Adjust similarity threshold as needed
responses = objection_handler.handle_objection(text)
return "\n".join(responses) if responses else "No objection response found."
return "No objection response found."
def run_app():
st.set_page_config(page_title="Sales Call Assistant", layout="wide")
st.title("AI Sales Call Assistant")
st.sidebar.title("Navigation")
app_mode = st.sidebar.radio("Choose a mode:", ["Real-Time Call Analysis", "Dashboard"])
if app_mode == "Real-Time Call Analysis":
st.header("Real-Time Sales Call Analysis")
if st.button("Start Listening"):
real_time_analysis()
elif app_mode == "Dashboard":
st.header("Call Summaries and Sentiment Analysis")
try:
data = fetch_call_data(config["google_sheet_id"])
if data.empty:
st.warning("No data available in the Google Sheet.")
else:
sentiment_counts = data['Sentiment'].value_counts()
col1, col2 = st.columns(2)
with col1:
st.subheader("Sentiment Distribution")
fig_pie = px.pie(
values=sentiment_counts.values,
names=sentiment_counts.index,
title='Call Sentiment Breakdown',
color_discrete_map={
'POSITIVE': 'green',
'NEGATIVE': 'red',
'NEUTRAL': 'blue'
}
)
st.plotly_chart(fig_pie)
with col2:
st.subheader("Sentiment Counts")
fig_bar = px.bar(
x=sentiment_counts.index,
y=sentiment_counts.values,
title='Number of Calls by Sentiment',
labels={'x': 'Sentiment', 'y': 'Number of Calls'},
color=sentiment_counts.index,
color_discrete_map={
'POSITIVE': 'green',
'NEGATIVE': 'red',
'NEUTRAL': 'blue'
}
)
st.plotly_chart(fig_bar)
st.subheader("All Calls")
display_data = data.copy()
display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])
unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)
call_details = data[data['Call ID'] == call_id]
if not call_details.empty:
st.subheader("Detailed Call Information")
st.write(f"**Call ID:** {call_id}")
st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")
st.subheader("Full Call Summary")
st.text_area("Summary:",
value=call_details.iloc[0]['Summary'],
height=200,
disabled=True)
st.subheader("Conversation Chunks")
for _, row in call_details.iterrows():
if pd.notna(row['Chunk']):
st.write(f"**Chunk:** {row['Chunk']}")
st.write(f"**Sentiment:** {row['Sentiment']}")
st.write("---")
else:
st.error("No details available for the selected Call ID.")
except Exception as e:
st.error(f"Error loading dashboard: {e}")
if __name__ == "__main__":
run_app() |