File size: 14,648 Bytes
6495c45
ecaceca
 
 
 
 
 
 
 
 
 
528146d
6495c45
 
 
528146d
ecaceca
3d4c19c
 
ecaceca
943c198
 
03fbaa1
248ac9a
6495c45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ab4df4
 
6495c45
2ab4df4
6495c45
2ab4df4
 
 
6495c45
2ab4df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6495c45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
943c198
ecaceca
 
 
 
 
 
 
 
 
6495c45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecaceca
 
 
 
 
 
 
 
 
6495c45
 
 
 
 
 
 
 
 
ecaceca
 
 
 
 
 
 
 
 
6495c45
ecaceca
 
 
 
 
 
 
 
 
03fbaa1
ecaceca
 
 
 
03fbaa1
 
ecaceca
 
03fbaa1
 
ecaceca
 
 
 
 
 
 
 
03fbaa1
 
ecaceca
 
 
 
03fbaa1
 
ecaceca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03fbaa1
ecaceca
03fbaa1
 
 
ecaceca
03fbaa1
ecaceca
 
03fbaa1
ecaceca
 
03fbaa1
ecaceca
 
 
 
 
 
03fbaa1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
from streamlit_webrtc import webrtc_streamer, WebRtcMode
from sentiment_analysis import analyze_sentiment
from product_recommender import ProductRecommender
from objection_handler import ObjectionHandler
from google_sheets import fetch_call_data, store_data_in_sheet
from sentence_transformers import SentenceTransformer
from env_setup import config
import re
import uuid
import pandas as pd
import plotly.express as px
import streamlit as st
import numpy as np
from io import BytesIO
import wave

# Initialize components
objection_handler = ObjectionHandler('objections.csv')
product_recommender = ProductRecommender('recommendations.csv')
model = SentenceTransformer('all-MiniLM-L6-v2')

def real_time_analysis():
    st.info("Listening... Say 'stop' to end the process.")

    def audio_frame_callback(audio_frame):
        # Convert audio frame to bytes
        audio_bytes = audio_frame.to_ndarray().tobytes()

        # Save audio bytes to a temporary WAV file
        with BytesIO() as wav_buffer:
            with wave.open(wav_buffer, 'wb') as wav_file:
                wav_file.setnchannels(1)  # Mono audio
                wav_file.setsampwidth(2)  # 2 bytes for int16
                wav_file.setframerate(16000)  # Sample rate
                wav_file.writeframes(audio_bytes)

            # Transcribe the audio
            text = transcribe_audio(wav_buffer.getvalue())
            if text:
                st.write(f"*Recognized Text:* {text}")

                # Analyze sentiment
                sentiment, score = analyze_sentiment(text)
                st.write(f"*Sentiment:* {sentiment} (Score: {score})")

                # Handle objection
                objection_response = handle_objection(text)
                st.write(f"*Objection Response:* {objection_response}")

                # Get product recommendation
                recommendations = []
                if is_valid_input(text) and is_relevant_sentiment(score):
                    query_embedding = model.encode([text])
                    distances, indices = product_recommender.index.search(query_embedding, 1)

                    if distances[0][0] < 1.5:  # Similarity threshold
                        recommendations = product_recommender.get_recommendations(text)

                if recommendations:
                    st.write("*Product Recommendations:*")
                    for rec in recommendations:
                        st.write(rec)

        return audio_frame

    # Start WebRTC audio stream
    webrtc_ctx = webrtc_streamer(
        key="real-time-audio",
        mode=WebRtcMode.SENDONLY,
        audio_frame_callback=audio_frame_callback,
        media_stream_constraints={"audio": True, "video": False},
    )

def transcribe_audio(audio_bytes):
    """Transcribe audio using a speech-to-text model or API."""
    # Replace this with your actual speech-to-text implementation
    # For now, we'll just return a dummy text
    return "This is a placeholder transcription."

def handle_objection(text):
    query_embedding = model.encode([text])
    distances, indices = objection_handler.index.search(query_embedding, 1)
    if distances[0][0] < 1.5:  # Adjust similarity threshold as needed
        responses = objection_handler.handle_objection(text)
        return "\n".join(responses) if responses else "No objection response found."
    return "No objection response found."

def is_valid_input(text):
    text = text.strip().lower()
    if len(text) < 3 or re.match(r'^[a-zA-Z\s]*$', text) is None:
        return False
    return True

def is_relevant_sentiment(sentiment_score):
    return sentiment_score > 0.4

def run_app():
    st.set_page_config(page_title="Sales Call Assistant", layout="wide")
    st.title("AI Sales Call Assistant")

    st.sidebar.title("Navigation")
    app_mode = st.sidebar.radio("Choose a mode:", ["Real-Time Call Analysis", "Dashboard"])

    if app_mode == "Real-Time Call Analysis":
        st.header("Real-Time Sales Call Analysis")
        real_time_analysis()

    elif app_mode == "Dashboard":
        st.header("Call Summaries and Sentiment Analysis")
        try:
            data = fetch_call_data(config["google_sheet_id"])
            if data.empty:
                st.warning("No data available in the Google Sheet.")
            else:
                sentiment_counts = data['Sentiment'].value_counts()

                col1, col2 = st.columns(2)
                with col1:
                    st.subheader("Sentiment Distribution")
                    fig_pie = px.pie(
                        values=sentiment_counts.values,
                        names=sentiment_counts.index,
                        title='Call Sentiment Breakdown',
                        color_discrete_map={
                            'POSITIVE': 'green',
                            'NEGATIVE': 'red',
                            'NEUTRAL': 'blue'
                        }
                    )
                    st.plotly_chart(fig_pie)

                with col2:
                    st.subheader("Sentiment Counts")
                    fig_bar = px.bar(
                        x=sentiment_counts.index,
                        y=sentiment_counts.values,
                        title='Number of Calls by Sentiment',
                        labels={'x': 'Sentiment', 'y': 'Number of Calls'},
                        color=sentiment_counts.index,
                        color_discrete_map={
                            'POSITIVE': 'green',
                            'NEGATIVE': 'red',
                            'NEUTRAL': 'blue'
                        }
                    )
                    st.plotly_chart(fig_bar)

                st.subheader("All Calls")
                display_data = data.copy()
                display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
                st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])

                unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
                call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)

                call_details = data[data['Call ID'] == call_id]
                if not call_details.empty:
                    st.subheader("Detailed Call Information")
                    st.write(f"**Call ID:** {call_id}")
                    st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")

                    st.subheader("Full Call Summary")
                    st.text_area("Summary:",
                                 value=call_details.iloc[0]['Summary'],
                                 height=200,
                                 disabled=True)

                    st.subheader("Conversation Chunks")
                    for _, row in call_details.iterrows():
                        if pd.notna(row['Chunk']):
                            st.write(f"**Chunk:** {row['Chunk']}")
                            st.write(f"**Sentiment:** {row['Sentiment']}")
                            st.write("---")
                else:
                    st.error("No details available for the selected Call ID.")
        except Exception as e:
            st.error(f"Error loading dashboard: {e}")

if __name__ == "__main__":
    run_app()from streamlit_webrtc import webrtc_streamer, WebRtcMode
from sentiment_analysis import analyze_sentiment
from product_recommender import ProductRecommender
from objection_handler import ObjectionHandler
from google_sheets import fetch_call_data, store_data_in_sheet
from sentence_transformers import SentenceTransformer
from env_setup import config
import re
import uuid
import pandas as pd
import plotly.express as px
import streamlit as st
import numpy as np
from io import BytesIO
import wave

# Initialize components
objection_handler = ObjectionHandler('objections.csv')
product_recommender = ProductRecommender('recommendations.csv')
model = SentenceTransformer('all-MiniLM-L6-v2')

def real_time_analysis():
    st.info("Listening... Say 'stop' to end the process.")

    def audio_frame_callback(audio_frame):
        # Convert audio frame to bytes
        audio_bytes = audio_frame.to_ndarray().tobytes()

        # Save audio bytes to a temporary WAV file
        with BytesIO() as wav_buffer:
            with wave.open(wav_buffer, 'wb') as wav_file:
                wav_file.setnchannels(1)  # Mono audio
                wav_file.setsampwidth(2)  # 2 bytes for int16
                wav_file.setframerate(16000)  # Sample rate
                wav_file.writeframes(audio_bytes)

            # Transcribe the audio
            text = transcribe_audio(wav_buffer.getvalue())
            if text:
                st.write(f"*Recognized Text:* {text}")

                # Analyze sentiment
                sentiment, score = analyze_sentiment(text)
                st.write(f"*Sentiment:* {sentiment} (Score: {score})")

                # Handle objection
                objection_response = handle_objection(text)
                st.write(f"*Objection Response:* {objection_response}")

                # Get product recommendation
                recommendations = []
                if is_valid_input(text) and is_relevant_sentiment(score):
                    query_embedding = model.encode([text])
                    distances, indices = product_recommender.index.search(query_embedding, 1)

                    if distances[0][0] < 1.5:  # Similarity threshold
                        recommendations = product_recommender.get_recommendations(text)

                if recommendations:
                    st.write("*Product Recommendations:*")
                    for rec in recommendations:
                        st.write(rec)

        return audio_frame

    # Start WebRTC audio stream
    webrtc_ctx = webrtc_streamer(
        key="real-time-audio",
        mode=WebRtcMode.SENDONLY,
        audio_frame_callback=audio_frame_callback,
        media_stream_constraints={"audio": True, "video": False},
    )

def transcribe_audio(audio_bytes):
    """Transcribe audio using a speech-to-text model or API."""
    # Replace this with your actual speech-to-text implementation
    # For now, we'll just return a dummy text
    return "This is a placeholder transcription."

def handle_objection(text):
    query_embedding = model.encode([text])
    distances, indices = objection_handler.index.search(query_embedding, 1)
    if distances[0][0] < 1.5:  # Adjust similarity threshold as needed
        responses = objection_handler.handle_objection(text)
        return "\n".join(responses) if responses else "No objection response found."
    return "No objection response found."

def is_valid_input(text):
    text = text.strip().lower()
    if len(text) < 3 or re.match(r'^[a-zA-Z\s]*$', text) is None:
        return False
    return True

def is_relevant_sentiment(sentiment_score):
    return sentiment_score > 0.4

def run_app():
    st.set_page_config(page_title="Sales Call Assistant", layout="wide")
    st.title("AI Sales Call Assistant")

    st.sidebar.title("Navigation")
    app_mode = st.sidebar.radio("Choose a mode:", ["Real-Time Call Analysis", "Dashboard"])

    if app_mode == "Real-Time Call Analysis":
        st.header("Real-Time Sales Call Analysis")
        real_time_analysis()

    elif app_mode == "Dashboard":
        st.header("Call Summaries and Sentiment Analysis")
        try:
            data = fetch_call_data(config["google_sheet_id"])
            if data.empty:
                st.warning("No data available in the Google Sheet.")
            else:
                sentiment_counts = data['Sentiment'].value_counts()

                col1, col2 = st.columns(2)
                with col1:
                    st.subheader("Sentiment Distribution")
                    fig_pie = px.pie(
                        values=sentiment_counts.values,
                        names=sentiment_counts.index,
                        title='Call Sentiment Breakdown',
                        color_discrete_map={
                            'POSITIVE': 'green',
                            'NEGATIVE': 'red',
                            'NEUTRAL': 'blue'
                        }
                    )
                    st.plotly_chart(fig_pie)

                with col2:
                    st.subheader("Sentiment Counts")
                    fig_bar = px.bar(
                        x=sentiment_counts.index,
                        y=sentiment_counts.values,
                        title='Number of Calls by Sentiment',
                        labels={'x': 'Sentiment', 'y': 'Number of Calls'},
                        color=sentiment_counts.index,
                        color_discrete_map={
                            'POSITIVE': 'green',
                            'NEGATIVE': 'red',
                            'NEUTRAL': 'blue'
                        }
                    )
                    st.plotly_chart(fig_bar)

                st.subheader("All Calls")
                display_data = data.copy()
                display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
                st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])

                unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
                call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)

                call_details = data[data['Call ID'] == call_id]
                if not call_details.empty:
                    st.subheader("Detailed Call Information")
                    st.write(f"**Call ID:** {call_id}")
                    st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")

                    st.subheader("Full Call Summary")
                    st.text_area("Summary:",
                                 value=call_details.iloc[0]['Summary'],
                                 height=200,
                                 disabled=True)

                    st.subheader("Conversation Chunks")
                    for _, row in call_details.iterrows():
                        if pd.notna(row['Chunk']):
                            st.write(f"**Chunk:** {row['Chunk']}")
                            st.write(f"**Sentiment:** {row['Sentiment']}")
                            st.write("---")
                else:
                    st.error("No details available for the selected Call ID.")
        except Exception as e:
            st.error(f"Error loading dashboard: {e}")

if __name__ == "__main__":
    run_app()