File size: 10,981 Bytes
03fbaa1
 
ecaceca
 
 
 
 
 
 
 
 
 
528146d
 
ecaceca
3d4c19c
 
ecaceca
943c198
 
03fbaa1
248ac9a
03fbaa1
 
 
 
 
943c198
 
03fbaa1
 
 
 
 
 
 
 
 
 
 
e34fac6
 
03fbaa1
e34fac6
03fbaa1
 
 
e34fac6
03fbaa1
 
 
 
e34fac6
03fbaa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
943c198
 
 
 
03fbaa1
943c198
 
 
 
 
 
 
03fbaa1
 
 
943c198
 
 
 
 
 
03fbaa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248ac9a
ecaceca
03fbaa1
ecaceca
 
 
03fbaa1
ecaceca
 
 
 
 
03fbaa1
ecaceca
 
 
 
03fbaa1
ecaceca
 
 
03fbaa1
ecaceca
 
 
 
03fbaa1
ecaceca
 
 
 
 
 
 
03fbaa1
ecaceca
 
 
 
03fbaa1
ecaceca
03fbaa1
ecaceca
03fbaa1
ecaceca
 
 
 
 
 
 
03fbaa1
943c198
ecaceca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03fbaa1
ecaceca
 
 
 
03fbaa1
 
ecaceca
 
03fbaa1
 
ecaceca
 
 
 
 
 
 
 
03fbaa1
 
ecaceca
 
 
 
03fbaa1
 
ecaceca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03fbaa1
ecaceca
03fbaa1
 
 
ecaceca
03fbaa1
ecaceca
 
03fbaa1
ecaceca
 
03fbaa1
ecaceca
 
 
 
 
 
03fbaa1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import sounddevice as sd
import numpy as np
from sentiment_analysis import analyze_sentiment
from product_recommender import ProductRecommender
from objection_handler import ObjectionHandler
from google_sheets import fetch_call_data, store_data_in_sheet
from sentence_transformers import SentenceTransformer
from env_setup import config
import re
import uuid
import pandas as pd
import plotly.express as px
import streamlit as st

# Initialize components
objection_handler = ObjectionHandler('objections.csv')
product_recommender = ProductRecommender('recommendations.csv')
model = SentenceTransformer('all-MiniLM-L6-v2')

def real_time_analysis():
    st.info("Listening... Say 'stop' to end the process.")

    samplerate = 16000  # Sample rate for audio capture
    duration = 5  # Duration of each audio chunk in seconds
    sentiment_scores = []
    transcribed_chunks = []
    total_text = ""

    try:
        while True:
            # Capture audio
            audio_data = sd.rec(int(samplerate * duration), samplerate=samplerate, channels=1, dtype='float32')
            sd.wait()  # Wait for the recording to finish

            # Convert audio data to bytes for processing
            audio_bytes = (audio_data * 32767).astype(np.int16).tobytes()

            # Analyze the audio
            text = analyze_audio(audio_bytes, samplerate)
            if not text:
                continue

            st.write(f"*Recognized Text:* {text}")

            if 'stop' in text.lower():
                st.write("Stopping real-time analysis...")
                break

            # Append to the total conversation
            total_text += text + " "
            sentiment, score = analyze_sentiment(text)
            sentiment_scores.append(score)

            # Handle objection
            objection_response = handle_objection(text)

            # Get product recommendation
            recommendations = []
            if is_valid_input(text) and is_relevant_sentiment(score):
                query_embedding = model.encode([text])
                distances, indices = product_recommender.index.search(query_embedding, 1)

                if distances[0][0] < 1.5:  # Similarity threshold
                    recommendations = product_recommender.get_recommendations(text)

            transcribed_chunks.append((text, sentiment, score))

            st.write(f"*Sentiment:* {sentiment} (Score: {score})")
            st.write(f"*Objection Response:* {objection_response}")

            if recommendations:
                st.write("*Product Recommendations:*")
                for rec in recommendations:
                    st.write(rec)

        # After conversation ends, calculate and display overall sentiment and summary
        overall_sentiment = calculate_overall_sentiment(sentiment_scores)
        call_summary = generate_comprehensive_summary(transcribed_chunks)

        st.subheader("Conversation Summary:")
        st.write(total_text.strip())
        st.subheader("Overall Sentiment:")
        st.write(overall_sentiment)

        # Store data in Google Sheets
        store_data_in_sheet(
            config["google_sheet_id"],
            transcribed_chunks,
            call_summary,
            overall_sentiment
        )
        st.success("Conversation data stored successfully in Google Sheets!")

    except Exception as e:
        st.error(f"Error in real-time analysis: {e}")

def analyze_audio(audio_bytes, samplerate):
    """Analyze audio data and return transcribed text."""
    try:
        # Use a speech-to-text model or API to transcribe the audio
        # For simplicity, we'll use a placeholder function
        text = transcribe_audio(audio_bytes, samplerate)
        return text
    except Exception as e:
        st.error(f"Error analyzing audio: {e}")
        return None

def transcribe_audio(audio_bytes, samplerate):
    """Placeholder function for transcribing audio."""
    # Replace this with your actual speech-to-text implementation
    # For now, we'll just return a dummy text
    return "This is a placeholder transcription."

def generate_comprehensive_summary(chunks):
    """Generate a comprehensive summary from conversation chunks."""
    full_text = " ".join([chunk[0] for chunk in chunks])
    total_chunks = len(chunks)
    sentiments = [chunk[1] for chunk in chunks]

    context_keywords = {
        'product_inquiry': ['dress', 'product', 'price', 'stock'],
        'pricing': ['cost', 'price', 'budget'],
        'negotiation': ['installment', 'payment', 'manage']
    }

    themes = []
    for keyword_type, keywords in context_keywords.items():
        if any(keyword.lower() in full_text.lower() for keyword in keywords):
            themes.append(keyword_type)

    positive_count = sentiments.count('POSITIVE')
    negative_count = sentiments.count('NEGATIVE')
    neutral_count = sentiments.count('NEUTRAL')

    key_interactions = []
    for chunk in chunks:
        if any(keyword.lower() in chunk[0].lower() for keyword in ['price', 'dress', 'stock', 'installment']):
            key_interactions.append(chunk[0])

    summary = f"Conversation Summary:\n"
    if 'product_inquiry' in themes:
        summary += "• Customer initiated a product inquiry about items.\n"
    if 'pricing' in themes:
        summary += "• Price and budget considerations were discussed.\n"
    if 'negotiation' in themes:
        summary += "• Customer and seller explored flexible payment options.\n"

    summary += f"\nConversation Sentiment:\n"
    summary += f"• Positive Interactions: {positive_count}\n"
    summary += f"• Negative Interactions: {negative_count}\n"
    summary += f"• Neutral Interactions: {neutral_count}\n"

    summary += "\nKey Conversation Points:\n"
    for interaction in key_interactions[:3]:
        summary += f"• {interaction}\n"

    if positive_count > negative_count:
        summary += "\nOutcome: Constructive and potentially successful interaction."
    elif negative_count > positive_count:
        summary += "\nOutcome: Interaction may require further follow-up."
    else:
        summary += "\nOutcome: Neutral interaction with potential for future engagement."

    return summary

def is_valid_input(text):
    text = text.strip().lower()
    if len(text) < 3 or re.match(r'^[a-zA-Z\s]*$', text) is None:
        return False
    return True

def is_relevant_sentiment(sentiment_score):
    return sentiment_score > 0.4

def calculate_overall_sentiment(sentiment_scores):
    if sentiment_scores:
        average_sentiment = sum(sentiment_scores) / len(sentiment_scores)
        overall_sentiment = (
            "POSITIVE" if average_sentiment > 0 else
            "NEGATIVE" if average_sentiment < 0 else
            "NEUTRAL"
        )
    else:
        overall_sentiment = "NEUTRAL"
    return overall_sentiment

def handle_objection(text):
    query_embedding = model.encode([text])
    distances, indices = objection_handler.index.search(query_embedding, 1)
    if distances[0][0] < 1.5:  # Adjust similarity threshold as needed
        responses = objection_handler.handle_objection(text)
        return "\n".join(responses) if responses else "No objection response found."
    return "No objection response found."

def run_app():
    st.set_page_config(page_title="Sales Call Assistant", layout="wide")
    st.title("AI Sales Call Assistant")

    st.sidebar.title("Navigation")
    app_mode = st.sidebar.radio("Choose a mode:", ["Real-Time Call Analysis", "Dashboard"])

    if app_mode == "Real-Time Call Analysis":
        st.header("Real-Time Sales Call Analysis")
        if st.button("Start Listening"):
            real_time_analysis()

    elif app_mode == "Dashboard":
        st.header("Call Summaries and Sentiment Analysis")
        try:
            data = fetch_call_data(config["google_sheet_id"])
            if data.empty:
                st.warning("No data available in the Google Sheet.")
            else:
                sentiment_counts = data['Sentiment'].value_counts()

                col1, col2 = st.columns(2)
                with col1:
                    st.subheader("Sentiment Distribution")
                    fig_pie = px.pie(
                        values=sentiment_counts.values,
                        names=sentiment_counts.index,
                        title='Call Sentiment Breakdown',
                        color_discrete_map={
                            'POSITIVE': 'green',
                            'NEGATIVE': 'red',
                            'NEUTRAL': 'blue'
                        }
                    )
                    st.plotly_chart(fig_pie)

                with col2:
                    st.subheader("Sentiment Counts")
                    fig_bar = px.bar(
                        x=sentiment_counts.index,
                        y=sentiment_counts.values,
                        title='Number of Calls by Sentiment',
                        labels={'x': 'Sentiment', 'y': 'Number of Calls'},
                        color=sentiment_counts.index,
                        color_discrete_map={
                            'POSITIVE': 'green',
                            'NEGATIVE': 'red',
                            'NEUTRAL': 'blue'
                        }
                    )
                    st.plotly_chart(fig_bar)

                st.subheader("All Calls")
                display_data = data.copy()
                display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
                st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])

                unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
                call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)

                call_details = data[data['Call ID'] == call_id]
                if not call_details.empty:
                    st.subheader("Detailed Call Information")
                    st.write(f"**Call ID:** {call_id}")
                    st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")

                    st.subheader("Full Call Summary")
                    st.text_area("Summary:",
                                 value=call_details.iloc[0]['Summary'],
                                 height=200,
                                 disabled=True)

                    st.subheader("Conversation Chunks")
                    for _, row in call_details.iterrows():
                        if pd.notna(row['Chunk']):
                            st.write(f"**Chunk:** {row['Chunk']}")
                            st.write(f"**Sentiment:** {row['Sentiment']}")
                            st.write("---")
                else:
                    st.error("No details available for the selected Call ID.")
        except Exception as e:
            st.error(f"Error loading dashboard: {e}")

if __name__ == "__main__":
    run_app()