File size: 8,710 Bytes
a7b55ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1368f1a
 
 
 
 
d61a403
 
1368f1a
d61a403
 
1368f1a
a7b55ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c11bc92
4fd611d
c11bc92
4fd611d
8916d3c
c11bc92
4fd611d
a7b55ec
 
 
 
 
 
 
 
 
 
 
 
 
4fd611d
a7b55ec
 
4fd611d
 
 
 
 
8916d3c
a7b55ec
 
4fd611d
 
 
 
 
3822e44
 
4fd611d
8916d3c
4fd611d
 
 
 
 
 
 
 
 
3822e44
 
4fd611d
8916d3c
4fd611d
 
 
a7b55ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd90af5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import gradio as gr
import os 
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
import pickle

import sys
from tensorflow.keras import preprocessing
sys.modules['keras.src.preprocessing'] = preprocessing
from tensorflow import keras
sys.modules['keras'] = keras

from huggingface_hub import HfApi

# Set your Hugging Face API token in the settings of this space as a secret variable

# Authenticate using HfApi
# api = HfApi()
# api.login(token=os.getenv("HUGGINGFACE_HUB_TOKEN"))

from huggingface_hub import login
login(token=os.getenv("HUGGINGFACE_HUB_TOKEN"))

# ---------------------------------------------------------------------------------------------------------------------------------------
# Loading the translation model and english and french tokenizers

with open('english_tokenizer.pickle', 'rb') as handle:
    english_tokenizer = pickle.load(handle)

with open('french_tokenizer.pickle', 'rb') as handle:
    french_tokenizer = pickle.load(handle)

translation_model = tf.keras.models.load_model('model2_v2.h5')

# ---------------------------------------------------------------------------------------------------------------------------------------
# Translate sentence function
MAX_LEN_EN = 15
MAX_LEN_FR = 21

VOCAB_SIZE_EN = len(english_tokenizer.word_index)
VOCAB_SIZE_FR = len(french_tokenizer.word_index)

# print(f'MAX_LEN_EN: {MAX_LEN_EN}')
# print(f'MAX_LEN_FR: {MAX_LEN_FR}')
# print(f'VOCAB_SIZE_EN: {VOCAB_SIZE_EN}')
# print(f'VOCAB_SIZE_FR: {VOCAB_SIZE_FR}')

# function implemented earlier, modified it to be used with gradio.
def translate_sentence(sentence, verbose=False):
    # Preprocess the input sentence
    sequence = english_tokenizer.texts_to_sequences([sentence])
    padded_sequence = pad_sequences(sequence, maxlen=MAX_LEN_EN, padding='post')

    # Initialize the target sequence with the start token
    start_token = VOCAB_SIZE_FR  #344
    target_sequence = np.zeros((1, MAX_LEN_FR))
    target_sequence[0, 0] = start_token

    # Placeholder for the translation
    translation = ''

    # Step-by-step translation
    for i in range(1, MAX_LEN_FR):
        # Predict the next word
        output_tokens = translation_model.predict([padded_sequence, target_sequence], verbose=verbose)

        # Get the most likely next word
        sampled_token_index = np.argmax(output_tokens[0, i - 1, :])
        if verbose:
          print(f'sampled_token_index: {sampled_token_index}')
        if sampled_token_index == 0:  # End token
            break
        sampled_word = french_tokenizer.index_word[sampled_token_index]
        if verbose:
          print(f'sampled_word: {sampled_word}')
        # Append the word to the translation
        translation += ' ' + sampled_word

        # Update the target sequence
        target_sequence[0, i] = sampled_token_index

    return translation.strip()

# Example usage:
# english_sentence = "paris is relaxing during december but it is usually chilly in july"
# print(english_sentence)
# translated_sentence = translate_sentence(english_sentence)
# print(translated_sentence)



# ----------------------------------------------------------------------------------------------------------------------------------------
# Gradio app

from datasets import load_dataset, Dataset

# Function to load the dataset from Hugging Face
def load_hf_dataset():
    dataset = load_dataset("Zaherrr/translation_log")
    return dataset["train"]  # Access the dataset without split specification

def update_history_with_status(english, french, history, status):
    history.append((english, french, status))
    history_text = "\n".join([f"{inp} ----> {out} ({status})" for inp, out, status in history])
    return history_text, history

def revert_last_action(history):
    if history:
        # Revert history
        history.pop()
        
        # Update history block text
        history_text = "\n".join([f"{inp} ----> {out} ({status})" for inp, out, status in history])
        
        # Revert last row in the dataset
        if row_indices:
            last_index = row_indices.pop()
            # Remove the last row from the dataset
            dataset = load_hf_dataset()
            df = dataset.to_pandas()
            df = df.drop(last_index).reset_index(drop=True)
            updated_dataset = Dataset.from_pandas(df)
            updated_dataset.push_to_hub("Zaherrr/translation_log")
    return history_text, history

# Function to flag data
def flag_action(english, french, corrected_french, flagged_successful, history):
    data = {"english": english, "french": french, "corrected_french": corrected_french, "status": flagged_successful}
    dataset = load_hf_dataset()
    df = dataset.to_pandas()
    new_df = pd.DataFrame([data])
    df = pd.concat([df, new_df], ignore_index=True)
    updated_dataset = Dataset.from_pandas(df)
    updated_dataset.push_to_hub("Zaherrr/translation_log")
    index = len(df) - 1
    row_indices.append(index)
    return update_history_with_status(english, french, history, "Flagged")

# Function to accept data
def accept_action(english, french, hidden_text, flagged_successful, history):
    data = {"english": english, "french": french, "corrected_french": hidden_text, "status": flagged_successful}
    dataset = load_hf_dataset()
    df = dataset.to_pandas()
    new_df = pd.DataFrame([data])
    df = pd.concat([df, new_df], ignore_index=True)
    updated_dataset = Dataset.from_pandas(df)
    updated_dataset.push_to_hub("Zaherrr/translation_log")
    index = len(df) - 1
    row_indices.append(index)
    return update_history_with_status(english, french, history, "Accepted")

# Define the Gradio interface
with gr.Blocks(theme='gstaff/sketch') as demo:
    gr.Markdown("<center><h1>Translate English to French</h1></center>")
    with gr.Row():
        with gr.Column():
            english = gr.Textbox(label="English", placeholder="Input English text here")
            Translate_button = gr.Button(value="Translate", variant="primary")
            hidden_text = gr.Textbox(label="Hidden Text", placeholder="Hidden Text", interactive=False, visible=False)
            flagged_successful = gr.Textbox(label="Acceptance Status", placeholder="Flagged Successful", interactive=False, visible=False)
        with gr.Column():
            french = gr.Textbox(label="French", placeholder="Predicted French text here", interactive=False)
            corrected_french = gr.Textbox(label="Corrected French", placeholder="Corrected French translation here")
            with gr.Column():
                with gr.Row():
                    accept_button = gr.Button(value="Accept", variant="primary")
                    flag_button = gr.Button(value="Flag", variant="secondary")
                    revert_button = gr.Button(value="Revert", variant="secondary")

    examples = gr.Examples(examples=[
        "paris is relaxing during december but it is usually chilly in july",
        "She is driving the truck"],
        inputs=english)

    gr.Markdown("History:")
    history_block = gr.Textbox(label="History", placeholder="English - French Translation Pairs", interactive=False, lines=5, max_lines=50)
    history = gr.State([])

    # Track the row indices in the CSVLogger
    row_indices = []

    gr.on(
        triggers=[english.submit, Translate_button.click],
        fn=translate_sentence,
        inputs=english,
        outputs=[french],
    ).then(
        fn=lambda: gr.Textbox(visible=False),
        inputs=None,
        outputs=flagged_successful,
    )

    gr.on(
        triggers=[flag_button.click],
        fn=lambda: gr.Textbox(value="Flagged", visible=True),
        outputs=flagged_successful,
    ).then(
        fn=flag_action,
        inputs=[english, french, corrected_french, flagged_successful, history],
        outputs=[history_block, history],
    )

    gr.on(
        triggers=[accept_button.click],
        fn=lambda: gr.Textbox(value="Accepted", visible=True),
        outputs=flagged_successful,
        
    ).then(
        fn=accept_action,
        inputs=[english, french, hidden_text, flagged_successful, history],
        outputs=[history_block, history],
    )

    gr.on(
        triggers=[revert_button.click],
        fn=revert_last_action,
        inputs=[history],
        outputs=[history_block, history],
    ).then(
        fn=lambda: gr.Textbox(placeholder="Reverted", visible=True),
        outputs=flagged_successful,
    )

    demo.launch(share=True, auth=('username', 'password123'), auth_message="Check your <strong>Login details</strong> sent to your <i>email</i>")