Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +218 -0
- english_tokenizer.pickle +3 -0
- french_tokenizer.pickle +3 -0
- model2_v2.h5 +3 -0
app.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import tensorflow as tf
|
6 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
7 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
8 |
+
import pickle
|
9 |
+
|
10 |
+
import sys
|
11 |
+
from tensorflow.keras import preprocessing
|
12 |
+
sys.modules['keras.src.preprocessing'] = preprocessing
|
13 |
+
from tensorflow import keras
|
14 |
+
sys.modules['keras'] = keras
|
15 |
+
|
16 |
+
# ---------------------------------------------------------------------------------------------------------------------------------------
|
17 |
+
# Loading the translation model and english and french tokenizers
|
18 |
+
|
19 |
+
with open('english_tokenizer.pickle', 'rb') as handle:
|
20 |
+
english_tokenizer = pickle.load(handle)
|
21 |
+
|
22 |
+
with open('french_tokenizer.pickle', 'rb') as handle:
|
23 |
+
french_tokenizer = pickle.load(handle)
|
24 |
+
|
25 |
+
translation_model = tf.keras.models.load_model('model2_v2.h5')
|
26 |
+
|
27 |
+
# ---------------------------------------------------------------------------------------------------------------------------------------
|
28 |
+
# Translate sentence function
|
29 |
+
MAX_LEN_EN = 15
|
30 |
+
MAX_LEN_FR = 21
|
31 |
+
|
32 |
+
VOCAB_SIZE_EN = len(english_tokenizer.word_index)
|
33 |
+
VOCAB_SIZE_FR = len(french_tokenizer.word_index)
|
34 |
+
|
35 |
+
# print(f'MAX_LEN_EN: {MAX_LEN_EN}')
|
36 |
+
# print(f'MAX_LEN_FR: {MAX_LEN_FR}')
|
37 |
+
# print(f'VOCAB_SIZE_EN: {VOCAB_SIZE_EN}')
|
38 |
+
# print(f'VOCAB_SIZE_FR: {VOCAB_SIZE_FR}')
|
39 |
+
|
40 |
+
# function implemented earlier, modified it to be used with gradio.
|
41 |
+
def translate_sentence(sentence, verbose=False):
|
42 |
+
# Preprocess the input sentence
|
43 |
+
sequence = english_tokenizer.texts_to_sequences([sentence])
|
44 |
+
padded_sequence = pad_sequences(sequence, maxlen=MAX_LEN_EN, padding='post')
|
45 |
+
|
46 |
+
# Initialize the target sequence with the start token
|
47 |
+
start_token = VOCAB_SIZE_FR #344
|
48 |
+
target_sequence = np.zeros((1, MAX_LEN_FR))
|
49 |
+
target_sequence[0, 0] = start_token
|
50 |
+
|
51 |
+
# Placeholder for the translation
|
52 |
+
translation = ''
|
53 |
+
|
54 |
+
# Step-by-step translation
|
55 |
+
for i in range(1, MAX_LEN_FR):
|
56 |
+
# Predict the next word
|
57 |
+
output_tokens = translation_model.predict([padded_sequence, target_sequence], verbose=verbose)
|
58 |
+
|
59 |
+
# Get the most likely next word
|
60 |
+
sampled_token_index = np.argmax(output_tokens[0, i - 1, :])
|
61 |
+
if verbose:
|
62 |
+
print(f'sampled_token_index: {sampled_token_index}')
|
63 |
+
if sampled_token_index == 0: # End token
|
64 |
+
break
|
65 |
+
sampled_word = french_tokenizer.index_word[sampled_token_index]
|
66 |
+
if verbose:
|
67 |
+
print(f'sampled_word: {sampled_word}')
|
68 |
+
# Append the word to the translation
|
69 |
+
translation += ' ' + sampled_word
|
70 |
+
|
71 |
+
# Update the target sequence
|
72 |
+
target_sequence[0, i] = sampled_token_index
|
73 |
+
|
74 |
+
return translation.strip()
|
75 |
+
|
76 |
+
# Example usage:
|
77 |
+
# english_sentence = "paris is relaxing during december but it is usually chilly in july"
|
78 |
+
# print(english_sentence)
|
79 |
+
# translated_sentence = translate_sentence(english_sentence)
|
80 |
+
# print(translated_sentence)
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
# ----------------------------------------------------------------------------------------------------------------------------------------
|
85 |
+
# Gradio app
|
86 |
+
|
87 |
+
# Function to update the history block with status
|
88 |
+
def update_history_with_status(english, french, history, status):
|
89 |
+
history.append((english, french, status))
|
90 |
+
history_text = "\n".join([f"{inp} ----> {out} ({status})" for inp, out, status in history])
|
91 |
+
return history_text, history
|
92 |
+
|
93 |
+
def revert_last_action(history):
|
94 |
+
if history:
|
95 |
+
# Revert history
|
96 |
+
history.pop()
|
97 |
+
|
98 |
+
# Update history block text
|
99 |
+
history_text = "\n".join([f"{inp} ----> {out} ({status})" for inp, out, status in history])
|
100 |
+
|
101 |
+
# Revert last row in the CSV file
|
102 |
+
if row_indices:
|
103 |
+
last_index = row_indices.pop()
|
104 |
+
# Remove the last row from the CSV file
|
105 |
+
csv_file = "flagged_translations/log.csv"
|
106 |
+
if os.path.exists(csv_file):
|
107 |
+
df = pd.read_csv(csv_file)
|
108 |
+
# print('read the csv file')
|
109 |
+
df = df.drop(last_index-1).reset_index(drop=True)
|
110 |
+
# print('removed the last index')
|
111 |
+
df.to_csv(csv_file, index=False)
|
112 |
+
# print('dumped the df to csv')
|
113 |
+
return history_text, history
|
114 |
+
|
115 |
+
# CSV Logger for flagging
|
116 |
+
flagging_callback = gr.CSVLogger() # logs the flagged data into a csv file
|
117 |
+
|
118 |
+
# Define the Gradio interface
|
119 |
+
with gr.Blocks(theme='gstaff/sketch') as demo:
|
120 |
+
gr.Markdown("<center><h1>Translate English to French</h1></center>")
|
121 |
+
with gr.Row():
|
122 |
+
with gr.Column():
|
123 |
+
english = gr.Textbox(label="English", placeholder="Input English text here")
|
124 |
+
Translate_button = gr.Button(value="Translate", variant="primary")
|
125 |
+
hidden_text = gr.Textbox(label="Hidden Text", placeholder="Hidden Text", interactive=False, visible=False)
|
126 |
+
flagged_successful = gr.Textbox(label="Acceptance Status", placeholder="Flagged Successful", interactive=False, visible=False)
|
127 |
+
with gr.Column():
|
128 |
+
french = gr.Textbox(label="French", placeholder="Predicted French text here", interactive=False)
|
129 |
+
corrected_french = gr.Textbox(label="Corrected French", placeholder="Corrected French translation here")
|
130 |
+
with gr.Column():
|
131 |
+
with gr.Row():
|
132 |
+
accept_button = gr.Button(value="Accept", variant="primary")
|
133 |
+
flag_button = gr.Button(value="Flag", variant="secondary")
|
134 |
+
revert_button = gr.Button(value="Revert", variant="secondary")
|
135 |
+
|
136 |
+
# This needs to be called at some point prior to the first call to flagging.callback.flag()
|
137 |
+
# flagging_callback.setup([english, french, corrected_french, "IsFlagged"], "flagged_translations")
|
138 |
+
flagging_callback.setup([english, french, corrected_french, flagged_successful], "flagged_translations")
|
139 |
+
|
140 |
+
|
141 |
+
examples = gr.Examples(examples=[
|
142 |
+
"paris is relaxing during december but it is usually chilly in july",
|
143 |
+
"She is driving the truck"],
|
144 |
+
inputs=english)
|
145 |
+
|
146 |
+
gr.Markdown("History:")
|
147 |
+
history_block = gr.Textbox(label="History", placeholder="English - French Translation Pairs", interactive=False, lines=5, max_lines=50)
|
148 |
+
history = gr.State([])
|
149 |
+
|
150 |
+
# Track the row indices in the CSVLogger
|
151 |
+
row_indices = []
|
152 |
+
def flag_action(english, french, corrected_french, flagged_successful, history):
|
153 |
+
data = [english, french, corrected_french, flagged_successful]
|
154 |
+
# Add the IsFlagged column with value True
|
155 |
+
flagged_value = flagged_successful if flagged_successful else "Flagged"
|
156 |
+
print(f"Flag Action - flagged_successful: {flagged_value}")
|
157 |
+
print(f"flagged_successful object: {flagged_successful}")
|
158 |
+
|
159 |
+
index = flagging_callback.flag(data)
|
160 |
+
row_indices.append(index)
|
161 |
+
return update_history_with_status(english, french, history, "Flagged")
|
162 |
+
|
163 |
+
def accept_action(english, french, hidden_text, flagged_successful, history):
|
164 |
+
data = [english, french, hidden_text, flagged_successful]
|
165 |
+
# Add the IsFlagged column with value False
|
166 |
+
# Extract value from flagged_successful
|
167 |
+
flagged_value = flagged_successful if flagged_successful else "Accepted"
|
168 |
+
print(f"Accept Action - flagged_successful: {flagged_value}")
|
169 |
+
print(f"flagged_successful object: {flagged_successful}")
|
170 |
+
index = flagging_callback.flag(data)
|
171 |
+
row_indices.append(index)
|
172 |
+
return update_history_with_status(english, french, history, "Accepted")
|
173 |
+
|
174 |
+
gr.on(
|
175 |
+
triggers=[english.submit, Translate_button.click],
|
176 |
+
fn=translate_sentence,
|
177 |
+
inputs=english,
|
178 |
+
outputs=[french],
|
179 |
+
).then(
|
180 |
+
fn=lambda: gr.Textbox(visible=False),
|
181 |
+
inputs=None,
|
182 |
+
outputs=flagged_successful,
|
183 |
+
)
|
184 |
+
|
185 |
+
gr.on(
|
186 |
+
triggers=[flag_button.click],
|
187 |
+
fn=lambda: gr.Textbox(value="Flagged", visible=True),
|
188 |
+
outputs=flagged_successful,
|
189 |
+
).then(
|
190 |
+
fn=flag_action,
|
191 |
+
inputs=[english, french, corrected_french, flagged_successful, history],
|
192 |
+
outputs=[history_block, history],
|
193 |
+
)
|
194 |
+
|
195 |
+
|
196 |
+
gr.on(
|
197 |
+
triggers=[accept_button.click],
|
198 |
+
fn=lambda: gr.Textbox(value="Accepted", visible=True),
|
199 |
+
outputs=flagged_successful,
|
200 |
+
|
201 |
+
).then(
|
202 |
+
fn=accept_action,
|
203 |
+
inputs=[english, french, hidden_text, flagged_successful, history],
|
204 |
+
outputs=[history_block, history],
|
205 |
+
)
|
206 |
+
|
207 |
+
gr.on(
|
208 |
+
triggers=[revert_button.click],
|
209 |
+
fn=revert_last_action,
|
210 |
+
inputs=[history],
|
211 |
+
outputs=[history_block, history],
|
212 |
+
).then(
|
213 |
+
fn=lambda: gr.Textbox(placeholder="Reverted", visible=True),
|
214 |
+
outputs=flagged_successful,
|
215 |
+
)
|
216 |
+
|
217 |
+
demo.launch(share=True, auth=('username', 'Zaka_module7'),
|
218 |
+
auth_message="Check your <strong>Login details</strong> sent to your <i>email</i>")#, debug=True)
|
english_tokenizer.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a7e198626a7c26d022e8db734e247db2b1792ec483ffadd6f4e9977620624c1
|
3 |
+
size 6044
|
french_tokenizer.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9773dd49cef95f1a2eb08c37ddaae08fdd0ba13a31b077deb7c5934ffbc2bae7
|
3 |
+
size 11453
|
model2_v2.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3f9304c423113437cb1a22a5f73ae99db50557f1ac079befd949fade2dfe323
|
3 |
+
size 23313472
|