Spaces:
Build error
Build error
File size: 34,734 Bytes
7ab6281 3251231 38ff098 3fe4bc7 38ff098 3fe4bc7 3251231 5292dd6 3251231 7ab6281 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 |
import gradio as gr
from datasets import load_dataset
from PIL import Image
import json
import torch
from torchvision import transforms
from transformers import DonutProcessor, VisionEncoderDecoderModel
# import subprocess
# # Install mlflow and dagshub without dependencies
# subprocess.run(['pip', 'install', '--no-deps', 'mlflow'])
# subprocess.run(['pip', 'install', '--no-deps', 'dagshub'])
import dagshub
import mlflow
import time
import os
# from kaggle_secrets import UserSecretsClient
# user_secrets = UserSecretsClient()
# token = user_secrets.get_secret("dags_hub_token")
# from google.colab import userdata
# token = userdata.get('dags_hub_token')
token = os.getenv('dags_hub_token')
dagshub.auth.add_app_token(token)
dagshub.init(repo_owner='zaheramasha',
repo_name='Finetuning_paligemma_Zaka_capstone',
mlflow=True)
# Define the MLflow run ID and artifact path
run_id = "c41cfd149a8c44f3a92d8e0f1253af35" # Donut model trained on the PyvizAndMarkMap dataset for 27 epochs reaching a train loss of 0.168
run_id = "89bafd5e525a4d3e9d004e13c9574198" # Donut model trained on the PyvizAndMarkMap dataset for 27 + 51 = 78 epochs reaching a train loss of 0.0353. This run was a continuation of the 27 epoch one
artifact_path = "Donut_model/model"
# Create the model URI using the run ID and artifact path
model_uri = f"runs:/{run_id}/{artifact_path}"
print(mlflow.artifacts.list_artifacts(run_id=run_id, artifact_path=artifact_path))
# Load the model and processors from the MLflow artifact
# loaded_model_bundle = mlflow.transformers.load_model(artifact_path=artifact_path, run_id=run_id)
# for the 20 epochs trained model
model_uri = f"mlflow-artifacts:/0a5d0550f55c4169b80cd6439556be8b/c41cfd149a8c44f3a92d8e0f1253af35/artifacts/Donut_model"
# for the fully 70 epochs trained model
model_uri = f"mlflow-artifacts:/17c375f6eab34c63b2a2e7792803132e/89bafd5e525a4d3e9d004e13c9574198/artifacts/Donut_model"
loaded_model_bundle = mlflow.transformers.load_model(model_uri=model_uri, device='cpu')#'cuda')
model = loaded_model_bundle.model
processor = DonutProcessor(tokenizer=loaded_model_bundle.tokenizer, feature_extractor=loaded_model_bundle.feature_extractor, image_processor=loaded_model_bundle.image_processor)
print(model.config.encoder.image_size)
print(model.config.decoder.max_length)
import json
import random
from typing import Any, List, Tuple, Dict
import torch
from torch.utils.data import Dataset
from datasets import load_dataset, DatasetDict, concatenate_datasets
from PIL import Image, ImageFilter
from torchvision import transforms
import re
# Load and split the dataset
Pyviz_dataset = load_dataset("Zaherrr/OOP_KG_Pyviz_Synthetic_Dataset", revision="Sorted_edges")
MarkMap_dataset = load_dataset("Zaherrr/OOP_KG_MarkMap_Synthetic_Dataset")
combined_dataset = concatenate_datasets([Pyviz_dataset['data'], MarkMap_dataset['data']])
train_test_split = combined_dataset.train_test_split(test_size=0.2, seed=42)
train_val_split = train_test_split["train"].train_test_split(test_size=0.125, seed=42)
split_dataset = DatasetDict(
{
"train": train_val_split["train"],
"val": train_val_split["test"],
"test": train_test_split["test"],
}
)
def reshape_json_data_to_fit_visualize_graph(graph_data):
nodes = graph_data["nodes"]
edges = graph_data["edges"]
transformed_nodes = [
{"id": nodes["id"][idx], "label": nodes["label"][idx]}
for idx in range(len(nodes["id"]))
]
transformed_edges = [
{"source": edges["source"][idx], "target": edges["target"][idx], "type": "->"}
for idx in range(len(edges["source"]))
]
return {"nodes": transformed_nodes, "edges": transformed_edges}
def from_json_like_to_xml_like(data):
def parse_nodes(nodes):
node_elements = []
for node in nodes:
label = node["label"]
node_elements.append(f'<n id="{node["id"]}">{label}</n>')
return "<nodes>\n" + "".join(node_elements) + "\n</nodes>"
def parse_edges(edges):
edge_elements = []
for edge in edges:
edge_elements.append(f'<e src="{edge["source"]}" tgt="{edge["target"]}"/>')
return "<edges>\n" + "".join(edge_elements) + "\n</edges>"
nodes_xml = parse_nodes(data["nodes"])
edges_xml = parse_edges(data["edges"])
return nodes_xml + "\n" + edges_xml
# function to shuffle the nodes on the fly in an attempt to reduce the bias from random node extraction
def flexible_node_shuffle(sequence):
# Split the sequence into nodes and edges
nodes_match = re.search(r'<nodes>(.*?)</nodes>', sequence, re.DOTALL)
edges_match = re.search(r'<edges>(.*?)</edges>', sequence, re.DOTALL)
if not nodes_match or not edges_match:
print("Error: Could not find nodes or edges in the sequence.")
return sequence
nodes_content = nodes_match.group(1)
edges_content = edges_match.group(1)
# Extract individual nodes
nodes = re.findall(r'<n id="(\d+)">(.*?)</n>', nodes_content, re.DOTALL)
# Shuffle the nodes
random.shuffle(nodes)
# Create a mapping of old ids to new ids
id_mapping = {old_id: str(new_id) for new_id, (old_id, _) in enumerate(nodes, start=1)}
# Reconstruct the nodes section with new ids
new_nodes_content = "".join(f'<n id="{new_id}">{content}</n>' for new_id, (_, content) in enumerate(nodes, start=1))
# Extract and update edge information
edges = re.findall(r'<e src="(\d+)" tgt="(\d+)"/>', edges_content)
new_edges = []
for src, tgt in edges:
new_src = int(id_mapping[src])
new_tgt = int(id_mapping[tgt])
# Append edge as tuple (original_src, original_tgt)
new_edges.append((new_src, new_tgt))
# Sort edges: first by the new src node id, then by the new tgt node id (preserving the original direction)
new_edges.sort(key=lambda x: (min(x[0], x[1]), max(x[0], x[1])))
# Reconstruct the edges section, preserving original direction
new_edges_content = "".join(f'<e src="{src}" tgt="{tgt}"/>' if src < tgt else f'<e src="{tgt}" tgt="{src}"/>' for src, tgt in new_edges)
# Reconstruct the full sequence
new_sequence = f'<nodes><newline>{new_nodes_content}<newline></nodes><newline><edges><newline>{new_edges_content}<newline></edges>'
return new_sequence
class Sharpen:
def __call__(self, img):
return img.filter(ImageFilter.SHARPEN)
# with the graph edit distance validation
import re
from nltk import edit_distance
import numpy as np
import torch
import pytorch_lightning as pl
import mlflow
import networkx as nx
import Levenshtein
import xml.etree.ElementTree as ET
import multiprocessing
import logging
from torch.optim.lr_scheduler import LambdaLR
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# for the node matching and reordering to align with the ground truth graph
def match_nodes_by_label(G_pred, G_gt):
"""Match nodes from predicted graph to ground truth graph based on label similarity."""
node_mapping = {}
for n_pred, pred_data in G_pred.nodes(data=True):
best_match = None
best_score = float('inf') # Levenshtein is a distance metric, lower is better
for n_gt, gt_data in G_gt.nodes(data=True):
sim_score = DonutModelPLModule.normalized_levenshtein(pred_data['label'], gt_data['label'])
if sim_score < best_score:
best_score = sim_score
best_match = n_gt
if best_match:
node_mapping[n_pred] = best_match
return node_mapping
# also for the reodering
def rebuild_graph_with_mapped_nodes(G_pred, node_mapping):
"""Rebuild the predicted graph with nodes aligned to the ground truth."""
G_aligned = nx.Graph()
for node_pred, node_gt in node_mapping.items():
G_aligned.add_node(node_gt, label=G_pred.nodes[node_pred]['label'])
for u, v in G_pred.edges():
if u in node_mapping and v in node_mapping:
G_aligned.add_edge(node_mapping[u], node_mapping[v])
return G_aligned
class DonutModelPLModule(pl.LightningModule):
def __init__(self, config, processor, model):
super().__init__()
self.config = config
self.processor = processor
self.model = model
self.train_loss_epoch_total = 0.0
self.val_loss_epoch_total = 0.0
self.train_batch_count = 0
self.val_batch_count = 0
self.edit_distance_scores = []
self.graph_metrics = {
'fast_graph_similarity': [],
'node_label_similarity': [],
'edge_similarity': [],
'degree_sequence_similarity': [],
'node_coverage': [],
'edge_precision': [],
'edge_recall': []
}
self.lr = config["lr"]
self.warmup_steps = config["warmup_steps"]
def training_step(self, batch, batch_idx):
pixel_values, labels, _ = batch
outputs = self.model(pixel_values, labels=labels)
loss = outputs.loss
self.train_loss_epoch_total += loss.item()
self.train_batch_count += 1
self.log("train_loss", loss, prog_bar=True)
return loss
def validation_step(self, batch, batch_idx, dataset_idx=0):
pixel_values, labels, answers = batch
outputs = self.model(pixel_values, labels=labels)
val_loss = outputs.loss
self.val_loss_epoch_total += val_loss.item()
self.val_batch_count += 1
self.log("val_loss", val_loss)
if (self.current_epoch + 1) % self.config.get("edit_distance_validation_frequency") == 0:
logger.info(f'Finished epoch: {self.current_epoch + 1}')
print(f'Finished epoch: {self.current_epoch + 1}')
batch_size = pixel_values.shape[0]
decoder_input_ids = torch.full((batch_size, 1), self.model.config.decoder_start_token_id, device=self.device)
try:
outputs = self.model.generate(pixel_values,
decoder_input_ids=decoder_input_ids,
max_length=self.config.get("max_length", 512),
early_stopping=True,
pad_token_id=self.processor.tokenizer.pad_token_id,
eos_token_id=self.processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[self.processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,)
predictions = self.process_predictions(outputs)
logger.info('Calculating graph metrics')
print('Calculating graph metrics')
levenshtein_scores, graph_scores = self.calculate_metrics(predictions, answers)
logger.info('Finished calculating graph metrics')
print('Finished calculating graph metrics')
self.edit_distance_scores.append(np.mean(levenshtein_scores))
for metric in self.graph_metrics:
self.graph_metrics[metric].append(np.mean([score[metric] for score in graph_scores if metric in score]))
self.log("val_edit_distance", np.mean(levenshtein_scores), prog_bar=True)
for metric in self.graph_metrics:
self.log(f"val_{metric}", self.graph_metrics[metric][-1], prog_bar=True)
except Exception as e:
logger.error(f"Error in validation step: {str(e)}")
print(f"Error in validation step: {str(e)}")
def process_predictions(self, outputs):
predictions = []
for seq in self.processor.tokenizer.batch_decode(outputs.sequences):
try:
seq = (
seq.replace(self.processor.tokenizer.eos_token, "")
.replace(self.processor.tokenizer.pad_token, "")
.replace('<n id=" ', '<n id="')
.replace('src=" ', 'src="')
.replace('tgt=" ', 'tgt="')
.replace('<newline>', '\n')
)
seq = re.sub(r"<s>", "", seq, count=1).strip()
seq = seq.replace("<s>", "")
predictions.append(seq)
except Exception as e:
logger.error(f"Error processing prediction: {str(e)}")
print(f"Error processing prediction: {str(e)}")
predictions.append("") # Append empty string if processing fails
return predictions
def calculate_metrics(self, predictions, answers):
levenshtein_scores = []
graph_scores = []
for pred, answer in zip(predictions, answers):
try:
pred = re.sub(r"(?:(?<=>) | (?=</s_))", "", pred)
answer = answer.replace(self.processor.tokenizer.bos_token, "").replace(self.processor.tokenizer.eos_token, "").replace("<newline>", "\n")
edit_dist = edit_distance(pred, answer) / max(len(pred), len(answer))
logger.info(f"Prediction: {pred}")
logger.info(f" Answer: {answer}")
logger.info(f" Normed ED: {edit_dist}")
print(f"Prediction: {pred}")
print(f" Answer: {answer}")
print(f" Normed ED: {edit_dist}")
levenshtein_scores.append(edit_dist)
pred_graph = self.create_graph_from_string(pred)
answer_graph = self.create_graph_from_string(answer)
# Added this to reorder the predicted graphs ignoring the node order for better validation
# Match nodes based on labels and reorder
node_mapping = match_nodes_by_label(pred_graph, answer_graph)
pred_graph_aligned = rebuild_graph_with_mapped_nodes(pred_graph, node_mapping)
# Compare the aligned graphs
# graph_scores.append(self.compare_graphs_with_timeout(pred_graph_aligned, answer_graph, timeout=60))
logger.info('Calculating the GED')
print('Calculating the GED')
# graph_scores.append(self.compare_graphs_with_timeout(pred_graph, answer_graph, timeout=60))
graph_scores.append(self.compare_graphs_with_timeout(pred_graph_aligned, answer_graph, timeout=60))
logger.info('Got the GED results')
print('Got the GED results')
except Exception as e:
logger.error(f"Error calculating metrics: {str(e)}")
print(f"Error calculating metrics: {str(e)}")
levenshtein_scores.append(1.0) # Worst possible score
graph_scores.append({metric: 0.0 for metric in self.graph_metrics}) # Worst possible scores
return levenshtein_scores, graph_scores
@staticmethod
def compare_graphs_with_timeout(pred_graph, answer_graph, timeout=60):
def wrapper(return_dict):
return_dict['result'] = DonutModelPLModule.compare_graphs(pred_graph, answer_graph)
manager = multiprocessing.Manager()
return_dict = manager.dict()
p = multiprocessing.Process(target=wrapper, args=(return_dict,))
p.start()
p.join(timeout)
if p.is_alive():
logger.warning('Graph comparison timed out. Returning default values.')
print('Graph comparison timed out. Returning default values.')
p.terminate()
p.join()
return {
"fast_graph_similarity": 0.0,
"node_label_similarity": 0.0,
"edge_similarity": 0.0,
"degree_sequence_similarity": 0.0,
"node_coverage": 0.0,
"edge_precision": 0.0,
"edge_recall": 0.0
}
else:
return return_dict.get('result', {
"fast_graph_similarity": 0.0,
"node_label_similarity": 0.0,
"edge_similarity": 0.0,
"degree_sequence_similarity": 0.0,
"node_coverage": 0.0,
"edge_precision": 0.0,
"edge_recall": 0.0
})
@staticmethod
def create_graph_from_string(xml_string):
G = nx.Graph()
try:
# Extract nodes
nodes = re.findall(r'<n id="(\d+)">(.*?)</n>', xml_string, re.DOTALL)
for node_id, label in nodes:
G.add_node(node_id, label=label.lower())
# Extract edges
edges = re.findall(r'<e src="(\d+)" tgt="(\d+)"/>', xml_string)
for src, tgt in edges:
G.add_edge(src, tgt)
except Exception as e:
logger.error(f"Error creating graph from string: {str(e)}")
print(f"Error creating graph from string: {str(e)}")
return G
@staticmethod
def normalized_levenshtein(s1, s2):
distance = Levenshtein.distance(s1, s2)
max_length = max(len(s1), len(s2))
return distance / max_length if max_length > 0 else 0
@staticmethod
def calculate_node_coverage(G1, G2, threshold=0.2):
matched_nodes = 0
for n1 in G1.nodes(data=True):
if any(DonutModelPLModule.normalized_levenshtein(n1[1]['label'], n2[1]['label']) <= threshold
for n2 in G2.nodes(data=True)):
matched_nodes += 1
return matched_nodes / max(len(G1), len(G2))
@staticmethod
def node_label_similarity(G1, G2):
labels1 = list(nx.get_node_attributes(G1, 'label').values())
labels2 = list(nx.get_node_attributes(G2, 'label').values())
total_similarity = 0
for label1 in labels1:
similarities = [1 - DonutModelPLModule.normalized_levenshtein(label1, label2) for label2 in labels2]
total_similarity += max(similarities) if similarities else 0
return total_similarity / len(labels1) if labels1 else 0
@staticmethod
def edge_similarity(G1, G2):
return len(set(G1.edges()) & set(G2.edges())) / max(len(G1.edges()), len(G2.edges())) if max(len(G1.edges()), len(G2.edges())) > 0 else 1
@staticmethod
def degree_sequence_similarity(G1, G2):
seq1 = sorted([d for n, d in G1.degree()], reverse=True)
seq2 = sorted([d for n, d in G2.degree()], reverse=True)
# If either sequence is empty, return 0 similarity
if not seq1 or not seq2:
return 0.0
# Padding sequences to make them the same length
max_len = max(len(seq1), len(seq2))
seq1 += [0] * (max_len - len(seq1))
seq2 += [0] * (max_len - len(seq2))
# Calculate degree sequence similarity
diff_sum = sum(abs(x - y) for x, y in zip(seq1, seq2))
# Return similarity, handle edge case where the sum of degrees is zero
return 1 - diff_sum / (2 * sum(seq1)) if sum(seq1) > 0 else 0.0
@staticmethod
def fast_graph_similarity(G1, G2):
node_sim = DonutModelPLModule.node_label_similarity(G1, G2)
edge_sim = DonutModelPLModule.edge_similarity(G1, G2)
degree_sim = DonutModelPLModule.degree_sequence_similarity(G1, G2)
return (node_sim + edge_sim + degree_sim) / 3
@staticmethod
def compare_graphs(G1, G2):
try:
node_coverage = DonutModelPLModule.calculate_node_coverage(G1, G2)
G1_edges = set(G1.edges())
G2_edges = set(G2.edges())
correct_edges = len(G1_edges & G2_edges)
edge_precision = correct_edges / len(G2_edges) if G2_edges else 0
edge_recall = correct_edges / len(G1_edges) if G1_edges else 0
return {
"fast_graph_similarity": DonutModelPLModule.fast_graph_similarity(G1, G2),
"node_label_similarity": DonutModelPLModule.node_label_similarity(G1, G2),
"edge_similarity": DonutModelPLModule.edge_similarity(G1, G2),
"degree_sequence_similarity": DonutModelPLModule.degree_sequence_similarity(G1, G2),
"node_coverage": node_coverage,
"edge_precision": edge_precision,
"edge_recall": edge_recall
}
except Exception as e:
logger.error(f"Error comparing graphs: {str(e)}")
print(f"Error comparing graphs: {str(e)}")
return {
"fast_graph_similarity": 0.0,
"node_label_similarity": 0.0,
"edge_similarity": 0.0,
"degree_sequence_similarity": 0.0,
"node_coverage": 0.0,
"edge_precision": 0.0,
"edge_recall": 0.0
}
def configure_optimizers(self):
# Define the optimizer
optimizer = torch.optim.AdamW(self.model.parameters(), lr=self.lr)
# Define the warmup + decay scheduler
def lr_lambda(current_step):
if current_step < self.warmup_steps:
return float(current_step) / float(max(1, self.warmup_steps))
return 1.0 # You can replace this with a decay function like exponential decay
scheduler = LambdaLR(optimizer, lr_lambda)
return {
'optimizer': optimizer,
'lr_scheduler': {
'scheduler': scheduler,
'interval': 'step', # Update the learning rate after every training step
'frequency': 1, # How often the scheduler is called (every step)
}
}
def on_validation_epoch_end(self):
avg_val_loss = self.val_loss_epoch_total / self.val_batch_count
mlflow.log_metric("validation_crossentropy_loss", avg_val_loss, step=self.current_epoch)
self.val_loss_epoch_total = 0.0
self.val_batch_count = 0
if (self.current_epoch + 1) % self.config.get("edit_distance_validation_frequency") == 0:
if self.edit_distance_scores:
mlflow.log_metric("validation_edit_distance", self.edit_distance_scores[-1], step=self.current_epoch)
for metric in self.graph_metrics:
if self.graph_metrics[metric]:
mlflow.log_metric(f"validation_{metric}", self.graph_metrics[metric][-1], step=self.current_epoch)
print('[INFO] - Finished the validation for epoch ', self.current_epoch + 1)
def on_train_epoch_end(self):
print(f'[INFO] - Finished epoch {self.current_epoch + 1}')
avg_train_loss = self.train_loss_epoch_total / self.train_batch_count
print(f'[INFO] - Train loss: {avg_train_loss}')
mlflow.log_metric("training_crossentropy_loss", avg_train_loss, step=self.current_epoch)
self.train_loss_epoch_total = 0.0
self.train_batch_count = 0
if ((self.current_epoch + 1) % self.config.get("save_model_weights_frequency", 10)) == 0:
self.save_model()
def on_fit_end(self):
self.save_model()
def save_model(self):
model_dir = "Donut_model"
os.makedirs(model_dir, exist_ok=True)
self.model.save_pretrained(model_dir)
print('[INFO] - Saving the model to dagshub using mlflow')
mlflow.transformers.log_model(
transformers_model={
"model": self.model,
"feature_extractor": self.processor.feature_extractor,
"image_processor": self.processor.image_processor,
"tokenizer": self.processor.tokenizer
},
artifact_path=model_dir,
# Set task explicitly since MLflow cannot infer it from the loaded model
task = "image-to-text"
)
print('[INFO] - Saved the model to dagshub using mlflow')
def train_dataloader(self):
return train_dataloader
def val_dataloader(self):
return val_dataloader
config = {"max_epochs":200,
# "val_check_interval":0.2, # how many times we want to validate during an epoch
"check_val_every_n_epoch":1,
"gradient_clip_val":1.0,
# "num_training_samples_per_epoch": 800,
"lr":8e-4, #3e-4, #3e-5,
"train_batch_sizes": [1], #[8], #[1],#[8],
"val_batch_sizes": [1],
# "seed":2022,
"num_nodes": 1,
"warmup_steps": 200, # 800/8*30/10, 10%
"verbose": True,
}
model_module = DonutModelPLModule(config, processor, model)
# Load dataset
dataset = split_dataset['test']
# Set up device
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
class Sharpen:
def __call__(self, img):
return img.filter(ImageFilter.SHARPEN)
def preprocess_image(image):
# Convert to PIL Image if it's not already
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
# Apply sharpening
sharpen = Sharpen()
sharpened_image = sharpen(image)
return sharpened_image
def perform_inference(image):
# Preprocess the image
inputs = processor(images=image, return_tensors="pt")
pixel_values = inputs.pixel_values.to(device)
# Prepare decoder input ids
batch_size = pixel_values.shape[0]
decoder_input_ids = torch.full((batch_size, 1), model.config.decoder_start_token_id, device=device)
# Generate output
outputs = model.generate(
pixel_values,
decoder_input_ids=decoder_input_ids,
max_length=max_length, # + 500, #512, # Adjust as needed
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
# Decode the output
decoded_output = processor.batch_decode(outputs.sequences)[0]
print("Raw model output:", decoded_output)
return decoded_output
def display_example(index):
example = dataset[index]
img = example["image"]
return img, None, None
def from_json_like_to_xml_like(data):
def parse_nodes(nodes):
node_elements = []
for node in nodes:
label = node["label"]
node_elements.append(f'<n id="{node["id"]}">{label}</n>')
return "<nodes>\n" + "".join(node_elements) + "\n</nodes>"
def parse_edges(edges):
edge_elements = []
for edge in edges:
edge_elements.append(f'<e src="{edge["source"]}" tgt="{edge["target"]}"/>')
return "<edges>\n" + "".join(edge_elements) + "\n</edges>"
nodes_xml = parse_nodes(data["nodes"])
edges_xml = parse_edges(data["edges"])
return nodes_xml + "\n" + edges_xml
def reshape_json_data_to_fit_visualize_graph(graph_data):
nodes = graph_data["nodes"]
edges = graph_data["edges"]
transformed_nodes = [
{"id": nodes["id"][idx], "label": nodes["label"][idx]}
for idx in range(len(nodes["id"]))
]
transformed_edges = [
{"source": edges["source"][idx], "target": edges["target"][idx], "type": "->"}
for idx in range(len(edges["source"]))
]
return {"nodes": transformed_nodes, "edges": transformed_edges}
def get_ground_truth(index):
example = dataset[index]
ground_truth = json.dumps(reshape_json_data_to_fit_visualize_graph(example))
ground_truth = from_json_like_to_xml_like(json.loads(ground_truth))
print(f'Ground truth sequence: {ground_truth}')
return ground_truth
def transform_image(img, index, physics_enabled):
# Perform inference
sequence = perform_inference(img)
# Transform the sequence to graph data
graph_data = transform_sequence(sequence)
# Generate the graph visualization
graph_html = visualize_graph(graph_data, physics_enabled)
# Modify the iframe to have a fixed height
graph_html = graph_html.replace('height: 100vh;', 'height: 500px;')
# Convert graph_data to a formatted JSON string
json_data = json.dumps(graph_data, indent=2)
return graph_html, json_data, sequence
import re
from typing import Dict, List, Tuple
def transform_sequence(sequence: str) -> Dict[str, List[Dict[str, str]]]:
# Extract nodes and edges
nodes_match = re.search(r'<nodes>(.*?)</nodes>', sequence, re.DOTALL)
edges_match = re.search(r'<edges>(.*?)</edges>', sequence, re.DOTALL)
if not nodes_match or not edges_match:
raise ValueError("Invalid input sequence: nodes or edges not found")
nodes_text = nodes_match.group(1)
edges_text = edges_match.group(1)
# Parse nodes
nodes = []
for node_match in re.finditer(r'<n id="\s*(\d+)">(.*?)</n>', nodes_text):
node_id, node_label = node_match.groups()
nodes.append({
"id": node_id.strip(),
"label": node_label.strip()
})
# Parse edges
edges = []
for edge_match in re.finditer(r'<e src="\s*(\d+)" tgt="\s*(\d+)"/>', edges_text):
source, target = edge_match.groups()
edges.append({
"source": source.strip(),
"target": target.strip(),
"type": "->"
})
return {
"nodes": nodes,
"edges": edges
}
# function to visualize the extracted graph
import json
from pyvis.network import Network
def create_graph(nodes, edges, physics_enabled=True):
net = Network(
notebook=True,
height="100vh",
width="100vw",
bgcolor="#222222",
font_color="white",
cdn_resources="remote",
)
for node in nodes:
net.add_node(
node["id"],
label=node["label"],
title=node["label"],
color="blue" if node["label"] == "OOP" else "green",
)
for edge in edges:
net.add_edge(edge["source"], edge["target"], title=edge["type"])
net.force_atlas_2based(
gravity=-50,
central_gravity=0.01,
spring_length=100,
spring_strength=0.08,
damping=0.4,
)
options = {
"nodes": {"physics": physics_enabled},
"edges": {"smooth": True},
"interaction": {"hover": True, "zoomView": True},
"physics": {
"enabled": physics_enabled,
"stabilization": {"enabled": True, "iterations": 200},
},
}
net.set_options(json.dumps(options))
return net
def visualize_graph(json_data, physics_enabled=True):
if isinstance(json_data, str):
data = json.loads(json_data)
else:
data = json_data
nodes = data["nodes"]
edges = data["edges"]
net = create_graph(nodes, edges, physics_enabled)
html = net.generate_html()
html = html.replace("'", '"')
html = html.replace(
'<div id="mynetwork"', '<div id="mynetwork" style="height: 100vh; width: 100%;"'
)
return f"""<iframe style="width: 100%; height: 100vh; border: none; margin: 0; padding: 0;" srcdoc='{html}'></iframe>"""
def update_physics(json_data, physics_enabled):
if json_data is None:
return None
data = json.loads(json_data)
graph_html = visualize_graph(data, physics_enabled)
graph_html = graph_html.replace('height: 100vh;', 'height: 500px;')
return graph_html
# function to calculate the graph similarity metrics between the prediction and the ground-truth
def calculate_and_display_metrics(pred_graph, ground_truth_graph):
if pred_graph is None or ground_truth_graph is None:
return "Please generate a prediction and ensure a ground truth graph is available."
#removing the start token from the string
pred_graph = pred_graph.replace('<s>', "").replace("<newline>", "\n").replace('src=" ', 'src="').replace('tgt=" ', 'tgt="').replace('<n id=" ', '<n id="')
print(f'Prediction: {pred_graph}')
# Assuming the graphs are in the correct format for the calculate_metrics function
metrics = model_module.calculate_metrics([pred_graph], [ground_truth_graph])
# Format the metrics for display
overall_metric = metrics[0][0]
detailed_metrics = metrics[1][0]
# output = f"Overall Metric: {overall_metric:.4f}\n\nDetailed Metrics:\n"
output = f"Detailed Metrics:\n"
for key, value in detailed_metrics.items():
output += f"{key}: {value:.4f}\n"
return output
def create_interface():
with gr.Blocks() as demo:
gr.Markdown("# Knowledge Graph Visualizer with Model Inference")
with gr.Row():
index_slider = gr.Slider(
minimum=0,
maximum=len(dataset) - 1,
step=1,
label="Example Index"
)
with gr.Row():
image_output = gr.Image(type="pil", label="Image", height=500, interactive=False)
graph_output = gr.HTML(label="Knowledge Graph")
with gr.Row():
transform_button = gr.Button("Transform")
physics_toggle = gr.Checkbox(label="Enable Physics", value=True)
with gr.Row():
json_output = gr.Code(language="json", label="Graph JSON Data")
ground_truth_output = gr.Textbox(visible=False)#gr.JSON(label="Ground Truth Graph", visible=False)
predicted_raw_sequence = gr.Textbox(visible=False)
with gr.Row():
metrics_button = gr.Button("Calculate Metrics")
metrics_output = gr.Textbox(label="Similarity Metrics", lines=10)
index_slider.change(
fn=display_example,
inputs=[index_slider],
outputs=[image_output, graph_output, json_output],
).then(
fn=get_ground_truth,
inputs=[index_slider],
outputs=[ground_truth_output],
)
transform_button.click(
fn=transform_image,
inputs=[image_output, index_slider, physics_toggle],
outputs=[graph_output, json_output, predicted_raw_sequence],
).then(
fn=calculate_and_display_metrics,
inputs=[predicted_raw_sequence, ground_truth_output],
outputs=[metrics_output]#gr.Textbox(label="Metrics"),
)
metrics_button.click(
fn=calculate_and_display_metrics,
inputs=[predicted_raw_sequence, ground_truth_output],
outputs=[metrics_output],
)
physics_toggle.change(
fn=update_physics,
inputs=[json_output, physics_toggle],
outputs=[graph_output],
)
return demo
# Create and launch the interface
if __name__ == "__main__":
demo = create_interface()
demo.launch(share=True, debug=True) |