File size: 34,734 Bytes
7ab6281
 
 
 
 
 
 
3251231
 
38ff098
3fe4bc7
38ff098
 
 
3fe4bc7
3251231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5292dd6
3251231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ab6281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
import gradio as gr
from datasets import load_dataset
from PIL import Image
import json
import torch
from torchvision import transforms

from transformers import DonutProcessor, VisionEncoderDecoderModel

# import subprocess

# # Install mlflow and dagshub without dependencies
# subprocess.run(['pip', 'install', '--no-deps', 'mlflow'])
# subprocess.run(['pip', 'install', '--no-deps', 'dagshub'])

import dagshub
import mlflow
import time
import os

# from kaggle_secrets import UserSecretsClient
# user_secrets = UserSecretsClient()
# token = user_secrets.get_secret("dags_hub_token")
# from google.colab import userdata
# token = userdata.get('dags_hub_token')
token = os.getenv('dags_hub_token')
dagshub.auth.add_app_token(token)

dagshub.init(repo_owner='zaheramasha',
             repo_name='Finetuning_paligemma_Zaka_capstone',
             mlflow=True)

# Define the MLflow run ID and artifact path
run_id = "c41cfd149a8c44f3a92d8e0f1253af35" # Donut model trained on the PyvizAndMarkMap dataset for 27 epochs reaching a train loss of 0.168
run_id = "89bafd5e525a4d3e9d004e13c9574198" # Donut model trained on the PyvizAndMarkMap dataset for 27 + 51 = 78 epochs reaching a train loss of 0.0353. This run was a continuation of the 27 epoch one

artifact_path = "Donut_model/model"

# Create the model URI using the run ID and artifact path
model_uri = f"runs:/{run_id}/{artifact_path}"
print(mlflow.artifacts.list_artifacts(run_id=run_id, artifact_path=artifact_path))
# Load the model and processors from the MLflow artifact
# loaded_model_bundle = mlflow.transformers.load_model(artifact_path=artifact_path, run_id=run_id)
# for the 20 epochs trained model
model_uri = f"mlflow-artifacts:/0a5d0550f55c4169b80cd6439556be8b/c41cfd149a8c44f3a92d8e0f1253af35/artifacts/Donut_model"

# for the fully 70 epochs trained model
model_uri = f"mlflow-artifacts:/17c375f6eab34c63b2a2e7792803132e/89bafd5e525a4d3e9d004e13c9574198/artifacts/Donut_model"
loaded_model_bundle = mlflow.transformers.load_model(model_uri=model_uri, device='cpu')#'cuda')

model = loaded_model_bundle.model
processor = DonutProcessor(tokenizer=loaded_model_bundle.tokenizer, feature_extractor=loaded_model_bundle.feature_extractor, image_processor=loaded_model_bundle.image_processor)
print(model.config.encoder.image_size)
print(model.config.decoder.max_length)


import json
import random
from typing import Any, List, Tuple, Dict
import torch
from torch.utils.data import Dataset
from datasets import load_dataset, DatasetDict, concatenate_datasets
from PIL import Image, ImageFilter
from torchvision import transforms
import re

# Load and split the dataset
Pyviz_dataset = load_dataset("Zaherrr/OOP_KG_Pyviz_Synthetic_Dataset", revision="Sorted_edges")
MarkMap_dataset = load_dataset("Zaherrr/OOP_KG_MarkMap_Synthetic_Dataset")
combined_dataset = concatenate_datasets([Pyviz_dataset['data'], MarkMap_dataset['data']])

train_test_split = combined_dataset.train_test_split(test_size=0.2, seed=42)
train_val_split = train_test_split["train"].train_test_split(test_size=0.125, seed=42)
split_dataset = DatasetDict(
    {
        "train": train_val_split["train"],
        "val": train_val_split["test"],
        "test": train_test_split["test"],
    }
)

def reshape_json_data_to_fit_visualize_graph(graph_data):
    nodes = graph_data["nodes"]
    edges = graph_data["edges"]
    transformed_nodes = [
        {"id": nodes["id"][idx], "label": nodes["label"][idx]}
        for idx in range(len(nodes["id"]))
    ]
    transformed_edges = [
        {"source": edges["source"][idx], "target": edges["target"][idx], "type": "->"}
        for idx in range(len(edges["source"]))
    ]
    return {"nodes": transformed_nodes, "edges": transformed_edges}

def from_json_like_to_xml_like(data):
    def parse_nodes(nodes):
        node_elements = []
        for node in nodes:
            label = node["label"]
            node_elements.append(f'<n id="{node["id"]}">{label}</n>')
        return "<nodes>\n" + "".join(node_elements) + "\n</nodes>"

    def parse_edges(edges):
        edge_elements = []
        for edge in edges:
            edge_elements.append(f'<e src="{edge["source"]}" tgt="{edge["target"]}"/>')
        return "<edges>\n" + "".join(edge_elements) + "\n</edges>"

    nodes_xml = parse_nodes(data["nodes"])
    edges_xml = parse_edges(data["edges"])
    return nodes_xml + "\n" + edges_xml


# function to shuffle the nodes on the fly in an attempt to reduce the bias from random node extraction
def flexible_node_shuffle(sequence):
    # Split the sequence into nodes and edges
    nodes_match = re.search(r'<nodes>(.*?)</nodes>', sequence, re.DOTALL)
    edges_match = re.search(r'<edges>(.*?)</edges>', sequence, re.DOTALL)

    if not nodes_match or not edges_match:
        print("Error: Could not find nodes or edges in the sequence.")
        return sequence

    nodes_content = nodes_match.group(1)
    edges_content = edges_match.group(1)

    # Extract individual nodes
    nodes = re.findall(r'<n id="(\d+)">(.*?)</n>', nodes_content, re.DOTALL)

    # Shuffle the nodes
    random.shuffle(nodes)

    # Create a mapping of old ids to new ids
    id_mapping = {old_id: str(new_id) for new_id, (old_id, _) in enumerate(nodes, start=1)}

    # Reconstruct the nodes section with new ids
    new_nodes_content = "".join(f'<n id="{new_id}">{content}</n>' for new_id, (_, content) in enumerate(nodes, start=1))

    # Extract and update edge information
    edges = re.findall(r'<e src="(\d+)" tgt="(\d+)"/>', edges_content)
    new_edges = []
    for src, tgt in edges:
        new_src = int(id_mapping[src])
        new_tgt = int(id_mapping[tgt])
        # Append edge as tuple (original_src, original_tgt)
        new_edges.append((new_src, new_tgt))

    # Sort edges: first by the new src node id, then by the new tgt node id (preserving the original direction)
    new_edges.sort(key=lambda x: (min(x[0], x[1]), max(x[0], x[1])))

    # Reconstruct the edges section, preserving original direction
    new_edges_content = "".join(f'<e src="{src}" tgt="{tgt}"/>' if src < tgt else f'<e src="{tgt}" tgt="{src}"/>' for src, tgt in new_edges)

    # Reconstruct the full sequence
    new_sequence = f'<nodes><newline>{new_nodes_content}<newline></nodes><newline><edges><newline>{new_edges_content}<newline></edges>'

    return new_sequence

class Sharpen:
    def __call__(self, img):
        return img.filter(ImageFilter.SHARPEN)

# with the graph edit distance validation
import re
from nltk import edit_distance
import numpy as np
import torch
import pytorch_lightning as pl
import mlflow
import networkx as nx
import Levenshtein
import xml.etree.ElementTree as ET
import multiprocessing
import logging
from torch.optim.lr_scheduler import LambdaLR

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


# for the node matching and reordering to align with the ground truth graph
def match_nodes_by_label(G_pred, G_gt):
    """Match nodes from predicted graph to ground truth graph based on label similarity."""
    node_mapping = {}
    for n_pred, pred_data in G_pred.nodes(data=True):
        best_match = None
        best_score = float('inf')  # Levenshtein is a distance metric, lower is better
        for n_gt, gt_data in G_gt.nodes(data=True):
            sim_score = DonutModelPLModule.normalized_levenshtein(pred_data['label'], gt_data['label'])
            if sim_score < best_score:
                best_score = sim_score
                best_match = n_gt
        if best_match:
            node_mapping[n_pred] = best_match
    return node_mapping

# also for the reodering
def rebuild_graph_with_mapped_nodes(G_pred, node_mapping):
    """Rebuild the predicted graph with nodes aligned to the ground truth."""
    G_aligned = nx.Graph()
    for node_pred, node_gt in node_mapping.items():
        G_aligned.add_node(node_gt, label=G_pred.nodes[node_pred]['label'])

    for u, v in G_pred.edges():
        if u in node_mapping and v in node_mapping:
            G_aligned.add_edge(node_mapping[u], node_mapping[v])

    return G_aligned

class DonutModelPLModule(pl.LightningModule):
    def __init__(self, config, processor, model):
        super().__init__()
        self.config = config
        self.processor = processor
        self.model = model
        self.train_loss_epoch_total = 0.0
        self.val_loss_epoch_total = 0.0
        self.train_batch_count = 0
        self.val_batch_count = 0
        self.edit_distance_scores = []
        self.graph_metrics = {
            'fast_graph_similarity': [],
            'node_label_similarity': [],
            'edge_similarity': [],
            'degree_sequence_similarity': [],
            'node_coverage': [],
            'edge_precision': [],
            'edge_recall': []
        }
        self.lr = config["lr"]
        self.warmup_steps = config["warmup_steps"]


    def training_step(self, batch, batch_idx):
        pixel_values, labels, _ = batch
        outputs = self.model(pixel_values, labels=labels)
        loss = outputs.loss
        self.train_loss_epoch_total += loss.item()
        self.train_batch_count += 1
        self.log("train_loss", loss, prog_bar=True)
        return loss

    def validation_step(self, batch, batch_idx, dataset_idx=0):
        pixel_values, labels, answers = batch
        outputs = self.model(pixel_values, labels=labels)
        val_loss = outputs.loss
        self.val_loss_epoch_total += val_loss.item()
        self.val_batch_count += 1
        self.log("val_loss", val_loss)

        if (self.current_epoch + 1) % self.config.get("edit_distance_validation_frequency") == 0:
            logger.info(f'Finished epoch: {self.current_epoch + 1}')
            print(f'Finished epoch: {self.current_epoch + 1}')
            batch_size = pixel_values.shape[0]
            decoder_input_ids = torch.full((batch_size, 1), self.model.config.decoder_start_token_id, device=self.device)

            try:
                outputs = self.model.generate(pixel_values,
                                           decoder_input_ids=decoder_input_ids,
                                           max_length=self.config.get("max_length", 512),
                                           early_stopping=True,
                                           pad_token_id=self.processor.tokenizer.pad_token_id,
                                           eos_token_id=self.processor.tokenizer.eos_token_id,
                                           use_cache=True,
                                           num_beams=1,
                                           bad_words_ids=[[self.processor.tokenizer.unk_token_id]],
                                           return_dict_in_generate=True,)

                predictions = self.process_predictions(outputs)
                logger.info('Calculating graph metrics')
                print('Calculating graph metrics')
                levenshtein_scores, graph_scores = self.calculate_metrics(predictions, answers)
                logger.info('Finished calculating graph metrics')
                print('Finished calculating graph metrics')

                self.edit_distance_scores.append(np.mean(levenshtein_scores))
                for metric in self.graph_metrics:
                    self.graph_metrics[metric].append(np.mean([score[metric] for score in graph_scores if metric in score]))

                self.log("val_edit_distance", np.mean(levenshtein_scores), prog_bar=True)
                for metric in self.graph_metrics:
                    self.log(f"val_{metric}", self.graph_metrics[metric][-1], prog_bar=True)
            except Exception as e:
                logger.error(f"Error in validation step: {str(e)}")
                print(f"Error in validation step: {str(e)}")

    def process_predictions(self, outputs):
        predictions = []
        for seq in self.processor.tokenizer.batch_decode(outputs.sequences):
            try:
                seq = (
                    seq.replace(self.processor.tokenizer.eos_token, "")
                    .replace(self.processor.tokenizer.pad_token, "")
                    .replace('<n id=" ', '<n id="')
                    .replace('src=" ', 'src="')
                    .replace('tgt=" ', 'tgt="')
                    .replace('<newline>', '\n')
                )
                seq = re.sub(r"<s>", "", seq, count=1).strip()
                seq = seq.replace("<s>", "")
                predictions.append(seq)
            except Exception as e:
                logger.error(f"Error processing prediction: {str(e)}")
                print(f"Error processing prediction: {str(e)}")
                predictions.append("")  # Append empty string if processing fails
        return predictions


    def calculate_metrics(self, predictions, answers):
        levenshtein_scores = []
        graph_scores = []
        for pred, answer in zip(predictions, answers):
            try:
                pred = re.sub(r"(?:(?<=>) | (?=</s_))", "", pred)
                answer = answer.replace(self.processor.tokenizer.bos_token, "").replace(self.processor.tokenizer.eos_token, "").replace("<newline>", "\n")
                edit_dist = edit_distance(pred, answer) / max(len(pred), len(answer))

                logger.info(f"Prediction: {pred}")
                logger.info(f"    Answer: {answer}")
                logger.info(f" Normed ED: {edit_dist}")
                print(f"Prediction: {pred}")
                print(f"    Answer: {answer}")
                print(f" Normed ED: {edit_dist}")
                levenshtein_scores.append(edit_dist)

                pred_graph = self.create_graph_from_string(pred)
                answer_graph = self.create_graph_from_string(answer)

                # Added this to reorder the predicted graphs ignoring the node order for better validation
                # Match nodes based on labels and reorder
                node_mapping = match_nodes_by_label(pred_graph, answer_graph)
                pred_graph_aligned = rebuild_graph_with_mapped_nodes(pred_graph, node_mapping)

                # Compare the aligned graphs
#                 graph_scores.append(self.compare_graphs_with_timeout(pred_graph_aligned, answer_graph, timeout=60))

                logger.info('Calculating the GED')
                print('Calculating the GED')
#                 graph_scores.append(self.compare_graphs_with_timeout(pred_graph, answer_graph, timeout=60))
                graph_scores.append(self.compare_graphs_with_timeout(pred_graph_aligned, answer_graph, timeout=60))
                logger.info('Got the GED results')
                print('Got the GED results')
            except Exception as e:
                logger.error(f"Error calculating metrics: {str(e)}")
                print(f"Error calculating metrics: {str(e)}")
                levenshtein_scores.append(1.0)  # Worst possible score
                graph_scores.append({metric: 0.0 for metric in self.graph_metrics})  # Worst possible scores
        return levenshtein_scores, graph_scores

    @staticmethod
    def compare_graphs_with_timeout(pred_graph, answer_graph, timeout=60):
        def wrapper(return_dict):
            return_dict['result'] = DonutModelPLModule.compare_graphs(pred_graph, answer_graph)

        manager = multiprocessing.Manager()
        return_dict = manager.dict()
        p = multiprocessing.Process(target=wrapper, args=(return_dict,))
        p.start()
        p.join(timeout)

        if p.is_alive():
            logger.warning('Graph comparison timed out. Returning default values.')
            print('Graph comparison timed out. Returning default values.')
            p.terminate()
            p.join()
            return {
                "fast_graph_similarity": 0.0,
                "node_label_similarity": 0.0,
                "edge_similarity": 0.0,
                "degree_sequence_similarity": 0.0,
                "node_coverage": 0.0,
                "edge_precision": 0.0,
                "edge_recall": 0.0
            }
        else:
            return return_dict.get('result', {
                "fast_graph_similarity": 0.0,
                "node_label_similarity": 0.0,
                "edge_similarity": 0.0,
                "degree_sequence_similarity": 0.0,
                "node_coverage": 0.0,
                "edge_precision": 0.0,
                "edge_recall": 0.0
            })

    @staticmethod
    def create_graph_from_string(xml_string):
        G = nx.Graph()
        try:
            # Extract nodes
            nodes = re.findall(r'<n id="(\d+)">(.*?)</n>', xml_string, re.DOTALL)
            for node_id, label in nodes:
                G.add_node(node_id, label=label.lower())

            # Extract edges
            edges = re.findall(r'<e src="(\d+)" tgt="(\d+)"/>', xml_string)
            for src, tgt in edges:
                G.add_edge(src, tgt)
        except Exception as e:
            logger.error(f"Error creating graph from string: {str(e)}")
            print(f"Error creating graph from string: {str(e)}")
        return G

    @staticmethod
    def normalized_levenshtein(s1, s2):
        distance = Levenshtein.distance(s1, s2)
        max_length = max(len(s1), len(s2))
        return distance / max_length if max_length > 0 else 0

    @staticmethod
    def calculate_node_coverage(G1, G2, threshold=0.2):
        matched_nodes = 0
        for n1 in G1.nodes(data=True):
            if any(DonutModelPLModule.normalized_levenshtein(n1[1]['label'], n2[1]['label']) <= threshold
                   for n2 in G2.nodes(data=True)):
                matched_nodes += 1
        return matched_nodes / max(len(G1), len(G2))

    @staticmethod
    def node_label_similarity(G1, G2):
        labels1 = list(nx.get_node_attributes(G1, 'label').values())
        labels2 = list(nx.get_node_attributes(G2, 'label').values())

        total_similarity = 0
        for label1 in labels1:
            similarities = [1 - DonutModelPLModule.normalized_levenshtein(label1, label2) for label2 in labels2]
            total_similarity += max(similarities) if similarities else 0

        return total_similarity / len(labels1) if labels1 else 0

    @staticmethod
    def edge_similarity(G1, G2):
        return len(set(G1.edges()) & set(G2.edges())) / max(len(G1.edges()), len(G2.edges())) if max(len(G1.edges()), len(G2.edges())) > 0 else 1

    @staticmethod
    def degree_sequence_similarity(G1, G2):
        seq1 = sorted([d for n, d in G1.degree()], reverse=True)
        seq2 = sorted([d for n, d in G2.degree()], reverse=True)

        # If either sequence is empty, return 0 similarity
        if not seq1 or not seq2:
            return 0.0

        # Padding sequences to make them the same length
        max_len = max(len(seq1), len(seq2))
        seq1 += [0] * (max_len - len(seq1))
        seq2 += [0] * (max_len - len(seq2))

        # Calculate degree sequence similarity
        diff_sum = sum(abs(x - y) for x, y in zip(seq1, seq2))

        # Return similarity, handle edge case where the sum of degrees is zero
        return 1 - diff_sum / (2 * sum(seq1)) if sum(seq1) > 0 else 0.0

    @staticmethod
    def fast_graph_similarity(G1, G2):
        node_sim = DonutModelPLModule.node_label_similarity(G1, G2)
        edge_sim = DonutModelPLModule.edge_similarity(G1, G2)
        degree_sim = DonutModelPLModule.degree_sequence_similarity(G1, G2)
        return (node_sim + edge_sim + degree_sim) / 3

    @staticmethod
    def compare_graphs(G1, G2):
        try:
            node_coverage = DonutModelPLModule.calculate_node_coverage(G1, G2)
            G1_edges = set(G1.edges())
            G2_edges = set(G2.edges())
            correct_edges = len(G1_edges & G2_edges)
            edge_precision = correct_edges / len(G2_edges) if G2_edges else 0
            edge_recall = correct_edges / len(G1_edges) if G1_edges else 0
            return {
                "fast_graph_similarity": DonutModelPLModule.fast_graph_similarity(G1, G2),
                "node_label_similarity": DonutModelPLModule.node_label_similarity(G1, G2),
                "edge_similarity": DonutModelPLModule.edge_similarity(G1, G2),
                "degree_sequence_similarity": DonutModelPLModule.degree_sequence_similarity(G1, G2),
                "node_coverage": node_coverage,
                "edge_precision": edge_precision,
                "edge_recall": edge_recall
            }
        except Exception as e:
            logger.error(f"Error comparing graphs: {str(e)}")
            print(f"Error comparing graphs: {str(e)}")
            return {
                "fast_graph_similarity": 0.0,
                "node_label_similarity": 0.0,
                "edge_similarity": 0.0,
                "degree_sequence_similarity": 0.0,
                "node_coverage": 0.0,
                "edge_precision": 0.0,
                "edge_recall": 0.0
            }

    def configure_optimizers(self):
        # Define the optimizer
        optimizer = torch.optim.AdamW(self.model.parameters(), lr=self.lr)

        # Define the warmup + decay scheduler
        def lr_lambda(current_step):
            if current_step < self.warmup_steps:
                return float(current_step) / float(max(1, self.warmup_steps))
            return 1.0  # You can replace this with a decay function like exponential decay

        scheduler = LambdaLR(optimizer, lr_lambda)

        return {
            'optimizer': optimizer,
            'lr_scheduler': {
                'scheduler': scheduler,
                'interval': 'step',  # Update the learning rate after every training step
                'frequency': 1,  # How often the scheduler is called (every step)
            }
        }

    def on_validation_epoch_end(self):
        avg_val_loss = self.val_loss_epoch_total / self.val_batch_count
        mlflow.log_metric("validation_crossentropy_loss", avg_val_loss, step=self.current_epoch)
        self.val_loss_epoch_total = 0.0
        self.val_batch_count = 0

        if (self.current_epoch + 1) % self.config.get("edit_distance_validation_frequency") == 0:
            if self.edit_distance_scores:
                mlflow.log_metric("validation_edit_distance", self.edit_distance_scores[-1], step=self.current_epoch)
            for metric in self.graph_metrics:
                if self.graph_metrics[metric]:
                    mlflow.log_metric(f"validation_{metric}", self.graph_metrics[metric][-1], step=self.current_epoch)
        print('[INFO] - Finished the validation for epoch ', self.current_epoch + 1)

    def on_train_epoch_end(self):
        print(f'[INFO] - Finished epoch {self.current_epoch + 1}')
        avg_train_loss = self.train_loss_epoch_total / self.train_batch_count
        print(f'[INFO] - Train loss: {avg_train_loss}')
        mlflow.log_metric("training_crossentropy_loss", avg_train_loss, step=self.current_epoch)
        self.train_loss_epoch_total = 0.0
        self.train_batch_count = 0

        if ((self.current_epoch + 1) % self.config.get("save_model_weights_frequency", 10)) == 0:
            self.save_model()

    def on_fit_end(self):
        self.save_model()

    def save_model(self):
        model_dir = "Donut_model"
        os.makedirs(model_dir, exist_ok=True)
        self.model.save_pretrained(model_dir)
        print('[INFO] - Saving the model to dagshub using mlflow')
        mlflow.transformers.log_model(
            transformers_model={
                "model": self.model,
                "feature_extractor": self.processor.feature_extractor,
                "image_processor": self.processor.image_processor,
                "tokenizer": self.processor.tokenizer
            },
            artifact_path=model_dir,
            # Set task explicitly since MLflow cannot infer it from the loaded model
            task = "image-to-text"
        )
        print('[INFO] - Saved the model to dagshub using mlflow')

    def train_dataloader(self):
        return train_dataloader

    def val_dataloader(self):
        return val_dataloader

config = {"max_epochs":200,
          # "val_check_interval":0.2, # how many times we want to validate during an epoch
          "check_val_every_n_epoch":1,
          "gradient_clip_val":1.0,
          # "num_training_samples_per_epoch": 800,
          "lr":8e-4, #3e-4, #3e-5,
          "train_batch_sizes": [1], #[8], #[1],#[8],
          "val_batch_sizes": [1],
          # "seed":2022,
          "num_nodes": 1,
          "warmup_steps": 200, # 800/8*30/10, 10%
          "verbose": True,
          }

model_module = DonutModelPLModule(config, processor, model)

# Load dataset
dataset = split_dataset['test'] 

# Set up device
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

class Sharpen:
    def __call__(self, img):
        return img.filter(ImageFilter.SHARPEN)

def preprocess_image(image):
    # Convert to PIL Image if it's not already
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)

    # Apply sharpening
    sharpen = Sharpen()
    sharpened_image = sharpen(image)

    return sharpened_image

def perform_inference(image):
    # Preprocess the image
    inputs = processor(images=image, return_tensors="pt")
    pixel_values = inputs.pixel_values.to(device)

    # Prepare decoder input ids
    batch_size = pixel_values.shape[0]
    decoder_input_ids = torch.full((batch_size, 1), model.config.decoder_start_token_id, device=device)

    # Generate output
    outputs = model.generate(
        pixel_values,
        decoder_input_ids=decoder_input_ids,
        max_length=max_length, # + 500, #512,  # Adjust as needed
        early_stopping=True,
        pad_token_id=processor.tokenizer.pad_token_id,
        eos_token_id=processor.tokenizer.eos_token_id,
        use_cache=True,
        num_beams=1,
        bad_words_ids=[[processor.tokenizer.unk_token_id]],
        return_dict_in_generate=True,
    )

    # Decode the output
    decoded_output = processor.batch_decode(outputs.sequences)[0]
    print("Raw model output:", decoded_output)

    return decoded_output

def display_example(index):
    example = dataset[index]
    img = example["image"]
    return img, None, None

def from_json_like_to_xml_like(data):
    def parse_nodes(nodes):
        node_elements = []
        for node in nodes:
            label = node["label"]
            node_elements.append(f'<n id="{node["id"]}">{label}</n>')
        return "<nodes>\n" + "".join(node_elements) + "\n</nodes>"

    def parse_edges(edges):
        edge_elements = []
        for edge in edges:
            edge_elements.append(f'<e src="{edge["source"]}" tgt="{edge["target"]}"/>')
        return "<edges>\n" + "".join(edge_elements) + "\n</edges>"

    nodes_xml = parse_nodes(data["nodes"])
    edges_xml = parse_edges(data["edges"])
    return nodes_xml + "\n" + edges_xml


def reshape_json_data_to_fit_visualize_graph(graph_data):
    nodes = graph_data["nodes"]
    edges = graph_data["edges"]
    transformed_nodes = [
        {"id": nodes["id"][idx], "label": nodes["label"][idx]}
        for idx in range(len(nodes["id"]))
    ]
    transformed_edges = [
        {"source": edges["source"][idx], "target": edges["target"][idx], "type": "->"}
        for idx in range(len(edges["source"]))
    ]
    return {"nodes": transformed_nodes, "edges": transformed_edges}

def get_ground_truth(index):
    example = dataset[index]
    ground_truth = json.dumps(reshape_json_data_to_fit_visualize_graph(example))
    ground_truth = from_json_like_to_xml_like(json.loads(ground_truth))
    print(f'Ground truth sequence: {ground_truth}')
    return ground_truth

def transform_image(img, index, physics_enabled):
    # Perform inference
    sequence = perform_inference(img)

    # Transform the sequence to graph data
    graph_data = transform_sequence(sequence)

    # Generate the graph visualization
    graph_html = visualize_graph(graph_data, physics_enabled)

    # Modify the iframe to have a fixed height
    graph_html = graph_html.replace('height: 100vh;', 'height: 500px;')

    # Convert graph_data to a formatted JSON string
    json_data = json.dumps(graph_data, indent=2)

    return graph_html, json_data, sequence

import re
from typing import Dict, List, Tuple

def transform_sequence(sequence: str) -> Dict[str, List[Dict[str, str]]]:
    # Extract nodes and edges
    nodes_match = re.search(r'<nodes>(.*?)</nodes>', sequence, re.DOTALL)
    edges_match = re.search(r'<edges>(.*?)</edges>', sequence, re.DOTALL)

    if not nodes_match or not edges_match:
        raise ValueError("Invalid input sequence: nodes or edges not found")

    nodes_text = nodes_match.group(1)
    edges_text = edges_match.group(1)

    # Parse nodes
    nodes = []
    for node_match in re.finditer(r'<n id="\s*(\d+)">(.*?)</n>', nodes_text):
        node_id, node_label = node_match.groups()
        nodes.append({
            "id": node_id.strip(),
            "label": node_label.strip()
        })

    # Parse edges
    edges = []
    for edge_match in re.finditer(r'<e src="\s*(\d+)" tgt="\s*(\d+)"/>', edges_text):
        source, target = edge_match.groups()
        edges.append({
            "source": source.strip(),
            "target": target.strip(),
            "type": "->" 
        })

    return {
        "nodes": nodes,
        "edges": edges
    }

# function to visualize the extracted graph
import json
from pyvis.network import Network


def create_graph(nodes, edges, physics_enabled=True):
    net = Network(
        notebook=True,
        height="100vh",
        width="100vw",
        bgcolor="#222222",
        font_color="white",
        cdn_resources="remote",
    )

    for node in nodes:
        net.add_node(
            node["id"],
            label=node["label"],
            title=node["label"],
            color="blue" if node["label"] == "OOP" else "green",
        )

    for edge in edges:
        net.add_edge(edge["source"], edge["target"], title=edge["type"])

    net.force_atlas_2based(
        gravity=-50,
        central_gravity=0.01,
        spring_length=100,
        spring_strength=0.08,
        damping=0.4,
    )

    options = {
        "nodes": {"physics": physics_enabled},
        "edges": {"smooth": True},
        "interaction": {"hover": True, "zoomView": True},
        "physics": {
            "enabled": physics_enabled,
            "stabilization": {"enabled": True, "iterations": 200},
        },
    }

    net.set_options(json.dumps(options))
    return net


def visualize_graph(json_data, physics_enabled=True):
    if isinstance(json_data, str):
        data = json.loads(json_data)
    else:
        data = json_data
    nodes = data["nodes"]
    edges = data["edges"]
    net = create_graph(nodes, edges, physics_enabled)
    html = net.generate_html()
    html = html.replace("'", '"')
    html = html.replace(
        '<div id="mynetwork"', '<div id="mynetwork" style="height: 100vh; width: 100%;"'
    )
    return f"""<iframe style="width: 100%; height: 100vh; border: none; margin: 0; padding: 0;" srcdoc='{html}'></iframe>"""

def update_physics(json_data, physics_enabled):
    if json_data is None:
        return None

    data = json.loads(json_data)
    graph_html = visualize_graph(data, physics_enabled)
    graph_html = graph_html.replace('height: 100vh;', 'height: 500px;')
    return graph_html


# function to calculate the graph similarity metrics between the prediction and the ground-truth
def calculate_and_display_metrics(pred_graph, ground_truth_graph):
    if pred_graph is None or ground_truth_graph is None:
        return "Please generate a prediction and ensure a ground truth graph is available."

    #removing the start token from the string
    pred_graph = pred_graph.replace('<s>', "").replace("<newline>", "\n").replace('src=" ', 'src="').replace('tgt=" ', 'tgt="').replace('<n id=" ', '<n id="')
    print(f'Prediction: {pred_graph}')

    # Assuming the graphs are in the correct format for the calculate_metrics function
    metrics = model_module.calculate_metrics([pred_graph], [ground_truth_graph])

    # Format the metrics for display
    overall_metric = metrics[0][0]
    detailed_metrics = metrics[1][0]

    # output = f"Overall Metric: {overall_metric:.4f}\n\nDetailed Metrics:\n"
    output = f"Detailed Metrics:\n"

    for key, value in detailed_metrics.items():
        output += f"{key}: {value:.4f}\n"

    return output


def create_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# Knowledge Graph Visualizer with Model Inference")

        with gr.Row():
            index_slider = gr.Slider(
                minimum=0,
                maximum=len(dataset) - 1,
                step=1,
                label="Example Index"
            )

        with gr.Row():
            image_output = gr.Image(type="pil", label="Image", height=500, interactive=False)
            graph_output = gr.HTML(label="Knowledge Graph")

        with gr.Row():
            transform_button = gr.Button("Transform")
            physics_toggle = gr.Checkbox(label="Enable Physics", value=True)

        with gr.Row():
            json_output = gr.Code(language="json", label="Graph JSON Data")
            ground_truth_output = gr.Textbox(visible=False)#gr.JSON(label="Ground Truth Graph", visible=False)
            predicted_raw_sequence = gr.Textbox(visible=False)

        with gr.Row():
            metrics_button = gr.Button("Calculate Metrics")
            metrics_output = gr.Textbox(label="Similarity Metrics", lines=10)

        index_slider.change(
            fn=display_example,
            inputs=[index_slider],
            outputs=[image_output, graph_output, json_output],
        ).then(
            fn=get_ground_truth,
            inputs=[index_slider],
            outputs=[ground_truth_output],
        )

        transform_button.click(
            fn=transform_image,
            inputs=[image_output, index_slider, physics_toggle],
            outputs=[graph_output, json_output, predicted_raw_sequence],
        ).then(
            fn=calculate_and_display_metrics,
            inputs=[predicted_raw_sequence, ground_truth_output],
            outputs=[metrics_output]#gr.Textbox(label="Metrics"),
        )
        metrics_button.click(
            fn=calculate_and_display_metrics,
            inputs=[predicted_raw_sequence, ground_truth_output],
            outputs=[metrics_output],
        )
        physics_toggle.change(
            fn=update_physics,
            inputs=[json_output, physics_toggle],
            outputs=[graph_output],
        )
    return demo

# Create and launch the interface
if __name__ == "__main__":
    demo = create_interface()
    demo.launch(share=True, debug=True)