Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from datasets import load_dataset
|
3 |
+
from PIL import Image
|
4 |
+
import json
|
5 |
+
import torch
|
6 |
+
from torchvision import transforms
|
7 |
+
|
8 |
+
# Load dataset
|
9 |
+
dataset = split_dataset['test']
|
10 |
+
|
11 |
+
# Set up device
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
model.to(device)
|
14 |
+
|
15 |
+
class Sharpen:
|
16 |
+
def __call__(self, img):
|
17 |
+
return img.filter(ImageFilter.SHARPEN)
|
18 |
+
|
19 |
+
def preprocess_image(image):
|
20 |
+
# Convert to PIL Image if it's not already
|
21 |
+
if not isinstance(image, Image.Image):
|
22 |
+
image = Image.fromarray(image)
|
23 |
+
|
24 |
+
# Apply sharpening
|
25 |
+
sharpen = Sharpen()
|
26 |
+
sharpened_image = sharpen(image)
|
27 |
+
|
28 |
+
return sharpened_image
|
29 |
+
|
30 |
+
def perform_inference(image):
|
31 |
+
# Preprocess the image
|
32 |
+
inputs = processor(images=image, return_tensors="pt")
|
33 |
+
pixel_values = inputs.pixel_values.to(device)
|
34 |
+
|
35 |
+
# Prepare decoder input ids
|
36 |
+
batch_size = pixel_values.shape[0]
|
37 |
+
decoder_input_ids = torch.full((batch_size, 1), model.config.decoder_start_token_id, device=device)
|
38 |
+
|
39 |
+
# Generate output
|
40 |
+
outputs = model.generate(
|
41 |
+
pixel_values,
|
42 |
+
decoder_input_ids=decoder_input_ids,
|
43 |
+
max_length=max_length, # + 500, #512, # Adjust as needed
|
44 |
+
early_stopping=True,
|
45 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
46 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
47 |
+
use_cache=True,
|
48 |
+
num_beams=1,
|
49 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
50 |
+
return_dict_in_generate=True,
|
51 |
+
)
|
52 |
+
|
53 |
+
# Decode the output
|
54 |
+
decoded_output = processor.batch_decode(outputs.sequences)[0]
|
55 |
+
print("Raw model output:", decoded_output)
|
56 |
+
|
57 |
+
return decoded_output
|
58 |
+
|
59 |
+
def display_example(index):
|
60 |
+
example = dataset[index]
|
61 |
+
img = example["image"]
|
62 |
+
return img, None, None
|
63 |
+
|
64 |
+
def from_json_like_to_xml_like(data):
|
65 |
+
def parse_nodes(nodes):
|
66 |
+
node_elements = []
|
67 |
+
for node in nodes:
|
68 |
+
label = node["label"]
|
69 |
+
node_elements.append(f'<n id="{node["id"]}">{label}</n>')
|
70 |
+
return "<nodes>\n" + "".join(node_elements) + "\n</nodes>"
|
71 |
+
|
72 |
+
def parse_edges(edges):
|
73 |
+
edge_elements = []
|
74 |
+
for edge in edges:
|
75 |
+
edge_elements.append(f'<e src="{edge["source"]}" tgt="{edge["target"]}"/>')
|
76 |
+
return "<edges>\n" + "".join(edge_elements) + "\n</edges>"
|
77 |
+
|
78 |
+
nodes_xml = parse_nodes(data["nodes"])
|
79 |
+
edges_xml = parse_edges(data["edges"])
|
80 |
+
return nodes_xml + "\n" + edges_xml
|
81 |
+
|
82 |
+
|
83 |
+
def reshape_json_data_to_fit_visualize_graph(graph_data):
|
84 |
+
nodes = graph_data["nodes"]
|
85 |
+
edges = graph_data["edges"]
|
86 |
+
transformed_nodes = [
|
87 |
+
{"id": nodes["id"][idx], "label": nodes["label"][idx]}
|
88 |
+
for idx in range(len(nodes["id"]))
|
89 |
+
]
|
90 |
+
transformed_edges = [
|
91 |
+
{"source": edges["source"][idx], "target": edges["target"][idx], "type": "->"}
|
92 |
+
for idx in range(len(edges["source"]))
|
93 |
+
]
|
94 |
+
return {"nodes": transformed_nodes, "edges": transformed_edges}
|
95 |
+
|
96 |
+
def get_ground_truth(index):
|
97 |
+
example = dataset[index]
|
98 |
+
ground_truth = json.dumps(reshape_json_data_to_fit_visualize_graph(example))
|
99 |
+
ground_truth = from_json_like_to_xml_like(json.loads(ground_truth))
|
100 |
+
print(f'Ground truth sequence: {ground_truth}')
|
101 |
+
return ground_truth
|
102 |
+
|
103 |
+
def transform_image(img, index, physics_enabled):
|
104 |
+
# Perform inference
|
105 |
+
sequence = perform_inference(img)
|
106 |
+
|
107 |
+
# Transform the sequence to graph data
|
108 |
+
graph_data = transform_sequence(sequence)
|
109 |
+
|
110 |
+
# Generate the graph visualization
|
111 |
+
graph_html = visualize_graph(graph_data, physics_enabled)
|
112 |
+
|
113 |
+
# Modify the iframe to have a fixed height
|
114 |
+
graph_html = graph_html.replace('height: 100vh;', 'height: 500px;')
|
115 |
+
|
116 |
+
# Convert graph_data to a formatted JSON string
|
117 |
+
json_data = json.dumps(graph_data, indent=2)
|
118 |
+
|
119 |
+
return graph_html, json_data, sequence
|
120 |
+
|
121 |
+
import re
|
122 |
+
from typing import Dict, List, Tuple
|
123 |
+
|
124 |
+
def transform_sequence(sequence: str) -> Dict[str, List[Dict[str, str]]]:
|
125 |
+
# Extract nodes and edges
|
126 |
+
nodes_match = re.search(r'<nodes>(.*?)</nodes>', sequence, re.DOTALL)
|
127 |
+
edges_match = re.search(r'<edges>(.*?)</edges>', sequence, re.DOTALL)
|
128 |
+
|
129 |
+
if not nodes_match or not edges_match:
|
130 |
+
raise ValueError("Invalid input sequence: nodes or edges not found")
|
131 |
+
|
132 |
+
nodes_text = nodes_match.group(1)
|
133 |
+
edges_text = edges_match.group(1)
|
134 |
+
|
135 |
+
# Parse nodes
|
136 |
+
nodes = []
|
137 |
+
for node_match in re.finditer(r'<n id="\s*(\d+)">(.*?)</n>', nodes_text):
|
138 |
+
node_id, node_label = node_match.groups()
|
139 |
+
nodes.append({
|
140 |
+
"id": node_id.strip(),
|
141 |
+
"label": node_label.strip()
|
142 |
+
})
|
143 |
+
|
144 |
+
# Parse edges
|
145 |
+
edges = []
|
146 |
+
for edge_match in re.finditer(r'<e src="\s*(\d+)" tgt="\s*(\d+)"/>', edges_text):
|
147 |
+
source, target = edge_match.groups()
|
148 |
+
edges.append({
|
149 |
+
"source": source.strip(),
|
150 |
+
"target": target.strip(),
|
151 |
+
"type": "->"
|
152 |
+
})
|
153 |
+
|
154 |
+
return {
|
155 |
+
"nodes": nodes,
|
156 |
+
"edges": edges
|
157 |
+
}
|
158 |
+
|
159 |
+
# function to visualize the extracted graph
|
160 |
+
import json
|
161 |
+
from pyvis.network import Network
|
162 |
+
|
163 |
+
|
164 |
+
def create_graph(nodes, edges, physics_enabled=True):
|
165 |
+
net = Network(
|
166 |
+
notebook=True,
|
167 |
+
height="100vh",
|
168 |
+
width="100vw",
|
169 |
+
bgcolor="#222222",
|
170 |
+
font_color="white",
|
171 |
+
cdn_resources="remote",
|
172 |
+
)
|
173 |
+
|
174 |
+
for node in nodes:
|
175 |
+
net.add_node(
|
176 |
+
node["id"],
|
177 |
+
label=node["label"],
|
178 |
+
title=node["label"],
|
179 |
+
color="blue" if node["label"] == "OOP" else "green",
|
180 |
+
)
|
181 |
+
|
182 |
+
for edge in edges:
|
183 |
+
net.add_edge(edge["source"], edge["target"], title=edge["type"])
|
184 |
+
|
185 |
+
net.force_atlas_2based(
|
186 |
+
gravity=-50,
|
187 |
+
central_gravity=0.01,
|
188 |
+
spring_length=100,
|
189 |
+
spring_strength=0.08,
|
190 |
+
damping=0.4,
|
191 |
+
)
|
192 |
+
|
193 |
+
options = {
|
194 |
+
"nodes": {"physics": physics_enabled},
|
195 |
+
"edges": {"smooth": True},
|
196 |
+
"interaction": {"hover": True, "zoomView": True},
|
197 |
+
"physics": {
|
198 |
+
"enabled": physics_enabled,
|
199 |
+
"stabilization": {"enabled": True, "iterations": 200},
|
200 |
+
},
|
201 |
+
}
|
202 |
+
|
203 |
+
net.set_options(json.dumps(options))
|
204 |
+
return net
|
205 |
+
|
206 |
+
|
207 |
+
def visualize_graph(json_data, physics_enabled=True):
|
208 |
+
if isinstance(json_data, str):
|
209 |
+
data = json.loads(json_data)
|
210 |
+
else:
|
211 |
+
data = json_data
|
212 |
+
nodes = data["nodes"]
|
213 |
+
edges = data["edges"]
|
214 |
+
net = create_graph(nodes, edges, physics_enabled)
|
215 |
+
html = net.generate_html()
|
216 |
+
html = html.replace("'", '"')
|
217 |
+
html = html.replace(
|
218 |
+
'<div id="mynetwork"', '<div id="mynetwork" style="height: 100vh; width: 100%;"'
|
219 |
+
)
|
220 |
+
return f"""<iframe style="width: 100%; height: 100vh; border: none; margin: 0; padding: 0;" srcdoc='{html}'></iframe>"""
|
221 |
+
|
222 |
+
def update_physics(json_data, physics_enabled):
|
223 |
+
if json_data is None:
|
224 |
+
return None
|
225 |
+
|
226 |
+
data = json.loads(json_data)
|
227 |
+
graph_html = visualize_graph(data, physics_enabled)
|
228 |
+
graph_html = graph_html.replace('height: 100vh;', 'height: 500px;')
|
229 |
+
return graph_html
|
230 |
+
|
231 |
+
|
232 |
+
# function to calculate the graph similarity metrics between the prediction and the ground-truth
|
233 |
+
def calculate_and_display_metrics(pred_graph, ground_truth_graph):
|
234 |
+
if pred_graph is None or ground_truth_graph is None:
|
235 |
+
return "Please generate a prediction and ensure a ground truth graph is available."
|
236 |
+
|
237 |
+
#removing the start token from the string
|
238 |
+
pred_graph = pred_graph.replace('<s>', "").replace("<newline>", "\n").replace('src=" ', 'src="').replace('tgt=" ', 'tgt="').replace('<n id=" ', '<n id="')
|
239 |
+
print(f'Prediction: {pred_graph}')
|
240 |
+
|
241 |
+
# Assuming the graphs are in the correct format for the calculate_metrics function
|
242 |
+
metrics = model_module.calculate_metrics([pred_graph], [ground_truth_graph])
|
243 |
+
|
244 |
+
# Format the metrics for display
|
245 |
+
overall_metric = metrics[0][0]
|
246 |
+
detailed_metrics = metrics[1][0]
|
247 |
+
|
248 |
+
# output = f"Overall Metric: {overall_metric:.4f}\n\nDetailed Metrics:\n"
|
249 |
+
output = f"Detailed Metrics:\n"
|
250 |
+
|
251 |
+
for key, value in detailed_metrics.items():
|
252 |
+
output += f"{key}: {value:.4f}\n"
|
253 |
+
|
254 |
+
return output
|
255 |
+
|
256 |
+
|
257 |
+
def create_interface():
|
258 |
+
with gr.Blocks() as demo:
|
259 |
+
gr.Markdown("# Knowledge Graph Visualizer with Model Inference")
|
260 |
+
|
261 |
+
with gr.Row():
|
262 |
+
index_slider = gr.Slider(
|
263 |
+
minimum=0,
|
264 |
+
maximum=len(dataset) - 1,
|
265 |
+
step=1,
|
266 |
+
label="Example Index"
|
267 |
+
)
|
268 |
+
|
269 |
+
with gr.Row():
|
270 |
+
image_output = gr.Image(type="pil", label="Image", height=500, interactive=False)
|
271 |
+
graph_output = gr.HTML(label="Knowledge Graph")
|
272 |
+
|
273 |
+
with gr.Row():
|
274 |
+
transform_button = gr.Button("Transform")
|
275 |
+
physics_toggle = gr.Checkbox(label="Enable Physics", value=True)
|
276 |
+
|
277 |
+
with gr.Row():
|
278 |
+
json_output = gr.Code(language="json", label="Graph JSON Data")
|
279 |
+
ground_truth_output = gr.Textbox(visible=False)#gr.JSON(label="Ground Truth Graph", visible=False)
|
280 |
+
predicted_raw_sequence = gr.Textbox(visible=False)
|
281 |
+
|
282 |
+
with gr.Row():
|
283 |
+
metrics_button = gr.Button("Calculate Metrics")
|
284 |
+
metrics_output = gr.Textbox(label="Similarity Metrics", lines=10)
|
285 |
+
|
286 |
+
index_slider.change(
|
287 |
+
fn=display_example,
|
288 |
+
inputs=[index_slider],
|
289 |
+
outputs=[image_output, graph_output, json_output],
|
290 |
+
).then(
|
291 |
+
fn=get_ground_truth,
|
292 |
+
inputs=[index_slider],
|
293 |
+
outputs=[ground_truth_output],
|
294 |
+
)
|
295 |
+
|
296 |
+
transform_button.click(
|
297 |
+
fn=transform_image,
|
298 |
+
inputs=[image_output, index_slider, physics_toggle],
|
299 |
+
outputs=[graph_output, json_output, predicted_raw_sequence],
|
300 |
+
).then(
|
301 |
+
fn=calculate_and_display_metrics,
|
302 |
+
inputs=[predicted_raw_sequence, ground_truth_output],
|
303 |
+
outputs=[metrics_output]#gr.Textbox(label="Metrics"),
|
304 |
+
)
|
305 |
+
metrics_button.click(
|
306 |
+
fn=calculate_and_display_metrics,
|
307 |
+
inputs=[predicted_raw_sequence, ground_truth_output],
|
308 |
+
outputs=[metrics_output],
|
309 |
+
)
|
310 |
+
physics_toggle.change(
|
311 |
+
fn=update_physics,
|
312 |
+
inputs=[json_output, physics_toggle],
|
313 |
+
outputs=[graph_output],
|
314 |
+
)
|
315 |
+
return demo
|
316 |
+
|
317 |
+
# Create and launch the interface
|
318 |
+
if __name__ == "__main__":
|
319 |
+
demo = create_interface()
|
320 |
+
demo.launch(share=True, debug=True)
|