Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ import numpy as np
|
|
9 |
from PIL import Image
|
10 |
import openai
|
11 |
|
|
|
12 |
MODEL = "gpt-image-1"
|
13 |
SIZE_CHOICES = ["auto", "1024x1024", "1536x1024", "1024x1536"]
|
14 |
QUALITY_CHOICES = ["auto", "low", "medium", "high"]
|
@@ -46,37 +47,24 @@ def _common_kwargs(
|
|
46 |
kwargs: Dict[str, Any] = dict(
|
47 |
model=MODEL,
|
48 |
n=n,
|
49 |
-
# REMOVED: response_format="b64_json", # This parameter caused the BadRequestError
|
50 |
)
|
51 |
-
|
52 |
-
# Use API defaults if 'auto' is selected
|
53 |
if size != "auto":
|
54 |
kwargs["size"] = size
|
55 |
if quality != "auto":
|
56 |
kwargs["quality"] = quality
|
57 |
-
|
58 |
-
# Prompt is optional for variations
|
59 |
if prompt is not None:
|
60 |
kwargs["prompt"] = prompt
|
61 |
-
|
62 |
-
# Output format specific settings (API default is png)
|
63 |
if out_fmt != "png":
|
64 |
kwargs["output_format"] = out_fmt
|
65 |
-
|
66 |
-
# Transparency via background parameter (png & webp only)
|
67 |
if transparent_bg and out_fmt in {"png", "webp"}:
|
68 |
kwargs["background"] = "transparent"
|
69 |
-
|
70 |
-
# Compression for lossy formats (API expects integer 0-100)
|
71 |
if out_fmt in {"jpeg", "webp"}:
|
72 |
-
# Ensure compression is an integer as expected by the API
|
73 |
kwargs["output_compression"] = int(compression)
|
74 |
-
|
75 |
return kwargs
|
76 |
|
|
|
77 |
|
78 |
# ---------- Generate ---------- #
|
79 |
-
|
80 |
def generate(
|
81 |
api_key: str,
|
82 |
prompt: str,
|
@@ -90,7 +78,7 @@ def generate(
|
|
90 |
"""Calls the OpenAI image generation endpoint."""
|
91 |
if not prompt:
|
92 |
raise gr.Error("Please enter a prompt.")
|
93 |
-
client = _client(api_key)
|
94 |
try:
|
95 |
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
|
96 |
resp = client.images.generate(**common_args)
|
@@ -101,18 +89,16 @@ def generate(
|
|
101 |
except openai.RateLimitError:
|
102 |
raise gr.Error("Rate limit exceeded. Please try again later.")
|
103 |
except openai.BadRequestError as e:
|
104 |
-
# Extract the specific error message if possible
|
105 |
error_message = str(e)
|
106 |
try:
|
107 |
-
# Attempt to parse the error body if it's JSON-like
|
108 |
import json
|
109 |
-
body = json.loads(str(e.body))
|
110 |
if isinstance(body, dict) and 'error' in body and 'message' in body['error']:
|
111 |
error_message = f"OpenAI Bad Request: {body['error']['message']}"
|
112 |
else:
|
113 |
error_message = f"OpenAI Bad Request: {e}"
|
114 |
except:
|
115 |
-
error_message = f"OpenAI Bad Request: {e}"
|
116 |
raise gr.Error(error_message)
|
117 |
except Exception as e:
|
118 |
raise gr.Error(f"An unexpected error occurred: {e}")
|
@@ -120,7 +106,6 @@ def generate(
|
|
120 |
|
121 |
|
122 |
# ---------- Edit / Inpaint ---------- #
|
123 |
-
|
124 |
def _bytes_from_numpy(arr: np.ndarray) -> bytes:
|
125 |
"""Convert RGBA/RGB uint8 numpy array to PNG bytes."""
|
126 |
img = Image.fromarray(arr.astype(np.uint8))
|
@@ -128,43 +113,21 @@ def _bytes_from_numpy(arr: np.ndarray) -> bytes:
|
|
128 |
img.save(out, format="PNG")
|
129 |
return out.getvalue()
|
130 |
|
131 |
-
|
132 |
def _extract_mask_array(mask_value: Union[np.ndarray, Dict[str, Any], None]) -> Optional[np.ndarray]:
|
133 |
"""Handle ImageMask / ImageEditor return formats and extract a numpy mask array."""
|
134 |
-
if mask_value is None:
|
135 |
-
|
136 |
-
|
137 |
-
# If we already have a numpy array (ImageMask with type="numpy")
|
138 |
-
if isinstance(mask_value, np.ndarray):
|
139 |
-
mask_arr = mask_value
|
140 |
-
# If it's an EditorValue dict coming from ImageEditor/ImageMask with type="file" or "pil"
|
141 |
-
elif isinstance(mask_value, dict):
|
142 |
-
# Prefer the composite (all layers merged) if present
|
143 |
comp = mask_value.get("composite")
|
144 |
if comp is not None and isinstance(comp, (Image.Image, np.ndarray)):
|
145 |
-
|
146 |
-
# Fallback to the mask if present (often from ImageMask)
|
147 |
elif mask_value.get("mask") is not None and isinstance(mask_value["mask"], (Image.Image, np.ndarray)):
|
148 |
-
|
149 |
-
# Fallback to the topmost layer
|
150 |
elif mask_value.get("layers"):
|
151 |
top_layer = mask_value["layers"][-1]
|
152 |
if isinstance(top_layer, (Image.Image, np.ndarray)):
|
153 |
-
|
154 |
-
|
155 |
-
return None # Cannot process layer format
|
156 |
-
else:
|
157 |
-
return None # No usable image data found in dict
|
158 |
-
else:
|
159 |
-
# Unknown format – ignore
|
160 |
-
return None
|
161 |
-
|
162 |
-
# Ensure mask_arr is a numpy array now
|
163 |
-
if not isinstance(mask_arr, np.ndarray):
|
164 |
-
return None # Should not happen after above checks, but safeguard
|
165 |
-
|
166 |
-
return mask_arr
|
167 |
-
|
168 |
|
169 |
def edit_image(
|
170 |
api_key: str,
|
@@ -179,99 +142,52 @@ def edit_image(
|
|
179 |
transparent_bg: bool,
|
180 |
):
|
181 |
"""Calls the OpenAI image edit endpoint."""
|
182 |
-
if image_numpy is None:
|
183 |
-
|
184 |
-
if not prompt:
|
185 |
-
raise gr.Error("Please enter an edit prompt.")
|
186 |
|
187 |
img_bytes = _bytes_from_numpy(image_numpy)
|
188 |
-
|
189 |
mask_bytes: Optional[bytes] = None
|
190 |
mask_numpy = _extract_mask_array(mask_value)
|
191 |
|
192 |
if mask_numpy is not None:
|
193 |
-
# Check if the mask seems empty (all black or fully transparent)
|
194 |
is_empty = False
|
195 |
-
if mask_numpy.ndim == 2:
|
196 |
-
|
197 |
-
elif mask_numpy.shape[-1] ==
|
198 |
-
is_empty = np.all(mask_numpy[:, :, 3] == 0)
|
199 |
-
elif mask_numpy.shape[-1] == 3: # RGB
|
200 |
-
is_empty = np.all(mask_numpy == 0)
|
201 |
|
202 |
if is_empty:
|
203 |
-
gr.Warning("
|
204 |
-
# Pass None if the mask is effectively empty, as per API docs (transparent areas are edited)
|
205 |
mask_bytes = None
|
206 |
else:
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
# So, we need to create an alpha channel where white pixels in the input mask become transparent (0),
|
211 |
-
# and black/other pixels become opaque (255).
|
212 |
-
|
213 |
-
if mask_numpy.ndim == 2: # Grayscale input mask
|
214 |
-
# Assume white (255) means edit -> make transparent (0 alpha)
|
215 |
-
# Assume black (0) means keep -> make opaque (255 alpha)
|
216 |
-
alpha = (mask_numpy == 0).astype(np.uint8) * 255
|
217 |
-
elif mask_numpy.shape[-1] == 4: # RGBA input mask (from gr.ImageMask)
|
218 |
-
# Use the alpha channel directly if it exists and seems meaningful,
|
219 |
-
# otherwise, treat non-black RGB as edit area.
|
220 |
-
# gr.ImageMask often returns RGBA where painted area is white [255,255,255,255] and background is [0,0,0,0]
|
221 |
-
# We want the painted (white) area to be transparent in the final mask.
|
222 |
-
# We want the unpainted (transparent black) area to be opaque in the final mask.
|
223 |
-
alpha = (mask_numpy[:, :, 3] == 0).astype(np.uint8) * 255
|
224 |
-
elif mask_numpy.shape[-1] == 3: # RGB input mask
|
225 |
-
# Assume white [255, 255, 255] means edit -> make transparent (0 alpha)
|
226 |
-
# Assume black [0, 0, 0] or other colors mean keep -> make opaque (255 alpha)
|
227 |
is_white = np.all(mask_numpy == [255, 255, 255], axis=-1)
|
228 |
alpha = (~is_white).astype(np.uint8) * 255
|
229 |
-
else:
|
230 |
-
raise gr.Error("Unsupported mask format.")
|
231 |
|
232 |
-
# Create a single-channel L mode image (grayscale/alpha) for the mask
|
233 |
mask_img = Image.fromarray(alpha, mode='L')
|
234 |
-
|
235 |
-
# The API expects an RGBA PNG where the alpha channel defines the mask.
|
236 |
-
# Create a black image with the calculated alpha channel.
|
237 |
rgba_mask = Image.new("RGBA", mask_img.size, (0, 0, 0, 0))
|
238 |
-
|
239 |
-
rgba_mask.putalpha(mask_img) # Use the calculated alpha
|
240 |
-
|
241 |
out = io.BytesIO()
|
242 |
rgba_mask.save(out, format="PNG")
|
243 |
mask_bytes = out.getvalue()
|
244 |
-
|
245 |
-
# Debug: Save mask locally to check
|
246 |
-
# rgba_mask.save("debug_mask_sent_to_api.png")
|
247 |
-
|
248 |
else:
|
249 |
-
gr.Info("No mask provided.
|
250 |
-
mask_bytes = None
|
251 |
|
252 |
-
client = _client(api_key)
|
253 |
try:
|
254 |
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
|
255 |
-
|
256 |
-
if "
|
257 |
-
common_args["prompt"] = prompt # Should always be there via _common_kwargs, but safeguard
|
258 |
-
|
259 |
-
# Ensure image and mask are passed correctly
|
260 |
-
api_kwargs = {
|
261 |
-
"image": img_bytes,
|
262 |
-
**common_args
|
263 |
-
}
|
264 |
-
if mask_bytes is not None:
|
265 |
-
api_kwargs["mask"] = mask_bytes
|
266 |
-
|
267 |
resp = client.images.edit(**api_kwargs)
|
268 |
-
|
269 |
except openai.AuthenticationError:
|
270 |
raise gr.Error("Invalid OpenAI API key.")
|
271 |
except openai.PermissionDeniedError:
|
272 |
-
raise gr.Error("Permission denied. Check
|
273 |
except openai.RateLimitError:
|
274 |
-
raise gr.Error("Rate limit exceeded.
|
275 |
except openai.BadRequestError as e:
|
276 |
error_message = str(e)
|
277 |
try:
|
@@ -279,15 +195,10 @@ def edit_image(
|
|
279 |
body = json.loads(str(e.body))
|
280 |
if isinstance(body, dict) and 'error' in body and 'message' in body['error']:
|
281 |
error_message = f"OpenAI Bad Request: {body['error']['message']}"
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
error_message += " (Ensure image and mask dimensions match and are supported.)"
|
287 |
-
else:
|
288 |
-
error_message = f"OpenAI Bad Request: {e}"
|
289 |
-
except:
|
290 |
-
error_message = f"OpenAI Bad Request: {e}" # Fallback
|
291 |
raise gr.Error(error_message)
|
292 |
except Exception as e:
|
293 |
raise gr.Error(f"An unexpected error occurred: {e}")
|
@@ -295,7 +206,6 @@ def edit_image(
|
|
295 |
|
296 |
|
297 |
# ---------- Variations ---------- #
|
298 |
-
|
299 |
def variation_image(
|
300 |
api_key: str,
|
301 |
image_numpy: np.ndarray,
|
@@ -307,27 +217,19 @@ def variation_image(
|
|
307 |
transparent_bg: bool,
|
308 |
):
|
309 |
"""Calls the OpenAI image variations endpoint."""
|
310 |
-
|
311 |
-
|
312 |
-
gr.Warning("Note: Image variations are officially supported for DALL·E 2, not gpt-image-1. This may not work as expected.")
|
313 |
-
|
314 |
-
if image_numpy is None:
|
315 |
-
raise gr.Error("Please upload an image.")
|
316 |
img_bytes = _bytes_from_numpy(image_numpy)
|
317 |
-
client = _client(api_key)
|
318 |
try:
|
319 |
-
# Prompt is None for variations
|
320 |
common_args = _common_kwargs(None, n, size, quality, out_fmt, compression, transparent_bg)
|
321 |
-
resp = client.images.variations(
|
322 |
-
image=img_bytes,
|
323 |
-
**common_args,
|
324 |
-
)
|
325 |
except openai.AuthenticationError:
|
326 |
raise gr.Error("Invalid OpenAI API key.")
|
327 |
except openai.PermissionDeniedError:
|
328 |
-
raise gr.Error("Permission denied.
|
329 |
except openai.RateLimitError:
|
330 |
-
raise gr.Error("Rate limit exceeded.
|
331 |
except openai.BadRequestError as e:
|
332 |
error_message = str(e)
|
333 |
try:
|
@@ -336,11 +238,9 @@ def variation_image(
|
|
336 |
if isinstance(body, dict) and 'error' in body and 'message' in body['error']:
|
337 |
error_message = f"OpenAI Bad Request: {body['error']['message']}"
|
338 |
if "model does not support variations" in error_message.lower():
|
339 |
-
error_message += " (gpt-image-1 does not support variations
|
340 |
-
else:
|
341 |
-
|
342 |
-
except:
|
343 |
-
error_message = f"OpenAI Bad Request: {e}" # Fallback
|
344 |
raise gr.Error(error_message)
|
345 |
except Exception as e:
|
346 |
raise gr.Error(f"An unexpected error occurred: {e}")
|
@@ -359,11 +259,12 @@ def build_ui():
|
|
359 |
)
|
360 |
|
361 |
with gr.Accordion("🔐 API key", open=False):
|
|
|
362 |
api = gr.Textbox(label="OpenAI API key", type="password", placeholder="sk-…")
|
363 |
|
364 |
# Common controls
|
365 |
with gr.Row():
|
366 |
-
n_slider = gr.Slider(1, 4, value=1, step=1, label="Number of images (n)", info="Max 4 for this demo.")
|
367 |
size = gr.Dropdown(SIZE_CHOICES, value="auto", label="Size", info="API default if 'auto'.")
|
368 |
quality = gr.Dropdown(QUALITY_CHOICES, value="auto", label="Quality", info="API default if 'auto'.")
|
369 |
with gr.Row():
|
@@ -376,7 +277,8 @@ def build_ui():
|
|
376 |
|
377 |
out_fmt.change(_toggle_compression, inputs=out_fmt, outputs=compression)
|
378 |
|
379 |
-
|
|
|
380 |
|
381 |
with gr.Tabs():
|
382 |
# ----- Generate Tab ----- #
|
@@ -385,9 +287,11 @@ def build_ui():
|
|
385 |
prompt_gen = gr.Textbox(label="Prompt", lines=3, placeholder="A photorealistic ginger cat astronaut on Mars", scale=4)
|
386 |
btn_gen = gr.Button("Generate 🚀", variant="primary", scale=1)
|
387 |
gallery_gen = gr.Gallery(label="Generated Images", columns=2, height="auto", preview=True)
|
|
|
|
|
388 |
btn_gen.click(
|
389 |
generate,
|
390 |
-
inputs=[prompt_gen] +
|
391 |
outputs=gallery_gen,
|
392 |
api_name="generate"
|
393 |
)
|
@@ -397,19 +301,20 @@ def build_ui():
|
|
397 |
gr.Markdown("Upload an image, then **paint the area to change** in the mask canvas below (white = edit area). The API requires the mask and image to have the same dimensions.")
|
398 |
with gr.Row():
|
399 |
img_edit = gr.Image(label="Source Image", type="numpy", height=400)
|
400 |
-
# Use ImageMask component for interactive painting
|
401 |
mask_canvas = gr.ImageMask(
|
402 |
label="Mask – Paint White Where Image Should Change",
|
403 |
-
type="numpy",
|
404 |
height=400
|
405 |
)
|
406 |
with gr.Row():
|
407 |
prompt_edit = gr.Textbox(label="Edit prompt", lines=2, placeholder="Replace the sky with a starry night", scale=4)
|
408 |
btn_edit = gr.Button("Edit 🖌️", variant="primary", scale=1)
|
409 |
gallery_edit = gr.Gallery(label="Edited Images", columns=2, height="auto", preview=True)
|
|
|
|
|
410 |
btn_edit.click(
|
411 |
edit_image,
|
412 |
-
inputs=[img_edit, mask_canvas, prompt_edit] +
|
413 |
outputs=gallery_edit,
|
414 |
api_name="edit"
|
415 |
)
|
@@ -421,9 +326,11 @@ def build_ui():
|
|
421 |
img_var = gr.Image(label="Source Image", type="numpy", height=400, scale=4)
|
422 |
btn_var = gr.Button("Create Variations ✨", variant="primary", scale=1)
|
423 |
gallery_var = gr.Gallery(label="Variations", columns=2, height="auto", preview=True)
|
|
|
|
|
424 |
btn_var.click(
|
425 |
variation_image,
|
426 |
-
inputs=[img_var] +
|
427 |
outputs=gallery_var,
|
428 |
api_name="variations"
|
429 |
)
|
@@ -432,6 +339,4 @@ def build_ui():
|
|
432 |
|
433 |
if __name__ == "__main__":
|
434 |
app = build_ui()
|
435 |
-
# Set share=True to create a public link (useful for Spaces)
|
436 |
-
# Set debug=True for more detailed logs in the console
|
437 |
app.launch(share=os.getenv("GRADIO_SHARE") == "true", debug=True)
|
|
|
9 |
from PIL import Image
|
10 |
import openai
|
11 |
|
12 |
+
# --- Constants and Helper Functions (Keep as before) ---
|
13 |
MODEL = "gpt-image-1"
|
14 |
SIZE_CHOICES = ["auto", "1024x1024", "1536x1024", "1024x1536"]
|
15 |
QUALITY_CHOICES = ["auto", "low", "medium", "high"]
|
|
|
47 |
kwargs: Dict[str, Any] = dict(
|
48 |
model=MODEL,
|
49 |
n=n,
|
|
|
50 |
)
|
|
|
|
|
51 |
if size != "auto":
|
52 |
kwargs["size"] = size
|
53 |
if quality != "auto":
|
54 |
kwargs["quality"] = quality
|
|
|
|
|
55 |
if prompt is not None:
|
56 |
kwargs["prompt"] = prompt
|
|
|
|
|
57 |
if out_fmt != "png":
|
58 |
kwargs["output_format"] = out_fmt
|
|
|
|
|
59 |
if transparent_bg and out_fmt in {"png", "webp"}:
|
60 |
kwargs["background"] = "transparent"
|
|
|
|
|
61 |
if out_fmt in {"jpeg", "webp"}:
|
|
|
62 |
kwargs["output_compression"] = int(compression)
|
|
|
63 |
return kwargs
|
64 |
|
65 |
+
# --- API Call Functions (Keep as corrected before) ---
|
66 |
|
67 |
# ---------- Generate ---------- #
|
|
|
68 |
def generate(
|
69 |
api_key: str,
|
70 |
prompt: str,
|
|
|
78 |
"""Calls the OpenAI image generation endpoint."""
|
79 |
if not prompt:
|
80 |
raise gr.Error("Please enter a prompt.")
|
81 |
+
client = _client(api_key) # API key used here
|
82 |
try:
|
83 |
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
|
84 |
resp = client.images.generate(**common_args)
|
|
|
89 |
except openai.RateLimitError:
|
90 |
raise gr.Error("Rate limit exceeded. Please try again later.")
|
91 |
except openai.BadRequestError as e:
|
|
|
92 |
error_message = str(e)
|
93 |
try:
|
|
|
94 |
import json
|
95 |
+
body = json.loads(str(e.body))
|
96 |
if isinstance(body, dict) and 'error' in body and 'message' in body['error']:
|
97 |
error_message = f"OpenAI Bad Request: {body['error']['message']}"
|
98 |
else:
|
99 |
error_message = f"OpenAI Bad Request: {e}"
|
100 |
except:
|
101 |
+
error_message = f"OpenAI Bad Request: {e}"
|
102 |
raise gr.Error(error_message)
|
103 |
except Exception as e:
|
104 |
raise gr.Error(f"An unexpected error occurred: {e}")
|
|
|
106 |
|
107 |
|
108 |
# ---------- Edit / Inpaint ---------- #
|
|
|
109 |
def _bytes_from_numpy(arr: np.ndarray) -> bytes:
|
110 |
"""Convert RGBA/RGB uint8 numpy array to PNG bytes."""
|
111 |
img = Image.fromarray(arr.astype(np.uint8))
|
|
|
113 |
img.save(out, format="PNG")
|
114 |
return out.getvalue()
|
115 |
|
|
|
116 |
def _extract_mask_array(mask_value: Union[np.ndarray, Dict[str, Any], None]) -> Optional[np.ndarray]:
|
117 |
"""Handle ImageMask / ImageEditor return formats and extract a numpy mask array."""
|
118 |
+
if mask_value is None: return None
|
119 |
+
if isinstance(mask_value, np.ndarray): return mask_value
|
120 |
+
if isinstance(mask_value, dict):
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
comp = mask_value.get("composite")
|
122 |
if comp is not None and isinstance(comp, (Image.Image, np.ndarray)):
|
123 |
+
return np.array(comp) if isinstance(comp, Image.Image) else comp
|
|
|
124 |
elif mask_value.get("mask") is not None and isinstance(mask_value["mask"], (Image.Image, np.ndarray)):
|
125 |
+
return np.array(mask_value["mask"]) if isinstance(mask_value["mask"], Image.Image) else mask_value["mask"]
|
|
|
126 |
elif mask_value.get("layers"):
|
127 |
top_layer = mask_value["layers"][-1]
|
128 |
if isinstance(top_layer, (Image.Image, np.ndarray)):
|
129 |
+
return np.array(top_layer) if isinstance(top_layer, Image.Image) else top_layer
|
130 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
def edit_image(
|
133 |
api_key: str,
|
|
|
142 |
transparent_bg: bool,
|
143 |
):
|
144 |
"""Calls the OpenAI image edit endpoint."""
|
145 |
+
if image_numpy is None: raise gr.Error("Please upload an image.")
|
146 |
+
if not prompt: raise gr.Error("Please enter an edit prompt.")
|
|
|
|
|
147 |
|
148 |
img_bytes = _bytes_from_numpy(image_numpy)
|
|
|
149 |
mask_bytes: Optional[bytes] = None
|
150 |
mask_numpy = _extract_mask_array(mask_value)
|
151 |
|
152 |
if mask_numpy is not None:
|
|
|
153 |
is_empty = False
|
154 |
+
if mask_numpy.ndim == 2: is_empty = np.all(mask_numpy == 0)
|
155 |
+
elif mask_numpy.shape[-1] == 4: is_empty = np.all(mask_numpy[:, :, 3] == 0)
|
156 |
+
elif mask_numpy.shape[-1] == 3: is_empty = np.all(mask_numpy == 0)
|
|
|
|
|
|
|
157 |
|
158 |
if is_empty:
|
159 |
+
gr.Warning("Mask appears empty. API might edit entire image or ignore mask.")
|
|
|
160 |
mask_bytes = None
|
161 |
else:
|
162 |
+
if mask_numpy.ndim == 2: alpha = (mask_numpy == 0).astype(np.uint8) * 255
|
163 |
+
elif mask_numpy.shape[-1] == 4: alpha = (mask_numpy[:, :, 3] == 0).astype(np.uint8) * 255
|
164 |
+
elif mask_numpy.shape[-1] == 3:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
is_white = np.all(mask_numpy == [255, 255, 255], axis=-1)
|
166 |
alpha = (~is_white).astype(np.uint8) * 255
|
167 |
+
else: raise gr.Error("Unsupported mask format.")
|
|
|
168 |
|
|
|
169 |
mask_img = Image.fromarray(alpha, mode='L')
|
|
|
|
|
|
|
170 |
rgba_mask = Image.new("RGBA", mask_img.size, (0, 0, 0, 0))
|
171 |
+
rgba_mask.putalpha(mask_img)
|
|
|
|
|
172 |
out = io.BytesIO()
|
173 |
rgba_mask.save(out, format="PNG")
|
174 |
mask_bytes = out.getvalue()
|
|
|
|
|
|
|
|
|
175 |
else:
|
176 |
+
gr.Info("No mask provided. Editing without specific mask.")
|
177 |
+
mask_bytes = None
|
178 |
|
179 |
+
client = _client(api_key) # API key used here
|
180 |
try:
|
181 |
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
|
182 |
+
api_kwargs = {"image": img_bytes, **common_args}
|
183 |
+
if mask_bytes is not None: api_kwargs["mask"] = mask_bytes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
resp = client.images.edit(**api_kwargs)
|
|
|
185 |
except openai.AuthenticationError:
|
186 |
raise gr.Error("Invalid OpenAI API key.")
|
187 |
except openai.PermissionDeniedError:
|
188 |
+
raise gr.Error("Permission denied. Check API key permissions/verification.")
|
189 |
except openai.RateLimitError:
|
190 |
+
raise gr.Error("Rate limit exceeded.")
|
191 |
except openai.BadRequestError as e:
|
192 |
error_message = str(e)
|
193 |
try:
|
|
|
195 |
body = json.loads(str(e.body))
|
196 |
if isinstance(body, dict) and 'error' in body and 'message' in body['error']:
|
197 |
error_message = f"OpenAI Bad Request: {body['error']['message']}"
|
198 |
+
if "mask" in error_message.lower(): error_message += " (Check mask format/dimensions)"
|
199 |
+
elif "size" in error_message.lower(): error_message += " (Check image/mask dimensions)"
|
200 |
+
else: error_message = f"OpenAI Bad Request: {e}"
|
201 |
+
except: error_message = f"OpenAI Bad Request: {e}"
|
|
|
|
|
|
|
|
|
|
|
202 |
raise gr.Error(error_message)
|
203 |
except Exception as e:
|
204 |
raise gr.Error(f"An unexpected error occurred: {e}")
|
|
|
206 |
|
207 |
|
208 |
# ---------- Variations ---------- #
|
|
|
209 |
def variation_image(
|
210 |
api_key: str,
|
211 |
image_numpy: np.ndarray,
|
|
|
217 |
transparent_bg: bool,
|
218 |
):
|
219 |
"""Calls the OpenAI image variations endpoint."""
|
220 |
+
gr.Warning("Note: Variations may not work with gpt-image-1 (use DALL·E 2).")
|
221 |
+
if image_numpy is None: raise gr.Error("Please upload an image.")
|
|
|
|
|
|
|
|
|
222 |
img_bytes = _bytes_from_numpy(image_numpy)
|
223 |
+
client = _client(api_key) # API key used here
|
224 |
try:
|
|
|
225 |
common_args = _common_kwargs(None, n, size, quality, out_fmt, compression, transparent_bg)
|
226 |
+
resp = client.images.variations(image=img_bytes, **common_args)
|
|
|
|
|
|
|
227 |
except openai.AuthenticationError:
|
228 |
raise gr.Error("Invalid OpenAI API key.")
|
229 |
except openai.PermissionDeniedError:
|
230 |
+
raise gr.Error("Permission denied.")
|
231 |
except openai.RateLimitError:
|
232 |
+
raise gr.Error("Rate limit exceeded.")
|
233 |
except openai.BadRequestError as e:
|
234 |
error_message = str(e)
|
235 |
try:
|
|
|
238 |
if isinstance(body, dict) and 'error' in body and 'message' in body['error']:
|
239 |
error_message = f"OpenAI Bad Request: {body['error']['message']}"
|
240 |
if "model does not support variations" in error_message.lower():
|
241 |
+
error_message += " (gpt-image-1 does not support variations)."
|
242 |
+
else: error_message = f"OpenAI Bad Request: {e}"
|
243 |
+
except: error_message = f"OpenAI Bad Request: {e}"
|
|
|
|
|
244 |
raise gr.Error(error_message)
|
245 |
except Exception as e:
|
246 |
raise gr.Error(f"An unexpected error occurred: {e}")
|
|
|
259 |
)
|
260 |
|
261 |
with gr.Accordion("🔐 API key", open=False):
|
262 |
+
# API key input component
|
263 |
api = gr.Textbox(label="OpenAI API key", type="password", placeholder="sk-…")
|
264 |
|
265 |
# Common controls
|
266 |
with gr.Row():
|
267 |
+
n_slider = gr.Slider(1, 4, value=1, step=1, label="Number of images (n)", info="Max 4 for this demo.")
|
268 |
size = gr.Dropdown(SIZE_CHOICES, value="auto", label="Size", info="API default if 'auto'.")
|
269 |
quality = gr.Dropdown(QUALITY_CHOICES, value="auto", label="Quality", info="API default if 'auto'.")
|
270 |
with gr.Row():
|
|
|
277 |
|
278 |
out_fmt.change(_toggle_compression, inputs=out_fmt, outputs=compression)
|
279 |
|
280 |
+
# Define the list of common controls *excluding* the API key
|
281 |
+
common_controls = [n_slider, size, quality, out_fmt, compression, transparent]
|
282 |
|
283 |
with gr.Tabs():
|
284 |
# ----- Generate Tab ----- #
|
|
|
287 |
prompt_gen = gr.Textbox(label="Prompt", lines=3, placeholder="A photorealistic ginger cat astronaut on Mars", scale=4)
|
288 |
btn_gen = gr.Button("Generate 🚀", variant="primary", scale=1)
|
289 |
gallery_gen = gr.Gallery(label="Generated Images", columns=2, height="auto", preview=True)
|
290 |
+
|
291 |
+
# CORRECTED inputs list for generate
|
292 |
btn_gen.click(
|
293 |
generate,
|
294 |
+
inputs=[api, prompt_gen] + common_controls, # API key first
|
295 |
outputs=gallery_gen,
|
296 |
api_name="generate"
|
297 |
)
|
|
|
301 |
gr.Markdown("Upload an image, then **paint the area to change** in the mask canvas below (white = edit area). The API requires the mask and image to have the same dimensions.")
|
302 |
with gr.Row():
|
303 |
img_edit = gr.Image(label="Source Image", type="numpy", height=400)
|
|
|
304 |
mask_canvas = gr.ImageMask(
|
305 |
label="Mask – Paint White Where Image Should Change",
|
306 |
+
type="numpy",
|
307 |
height=400
|
308 |
)
|
309 |
with gr.Row():
|
310 |
prompt_edit = gr.Textbox(label="Edit prompt", lines=2, placeholder="Replace the sky with a starry night", scale=4)
|
311 |
btn_edit = gr.Button("Edit 🖌️", variant="primary", scale=1)
|
312 |
gallery_edit = gr.Gallery(label="Edited Images", columns=2, height="auto", preview=True)
|
313 |
+
|
314 |
+
# CORRECTED inputs list for edit_image
|
315 |
btn_edit.click(
|
316 |
edit_image,
|
317 |
+
inputs=[api, img_edit, mask_canvas, prompt_edit] + common_controls, # API key first
|
318 |
outputs=gallery_edit,
|
319 |
api_name="edit"
|
320 |
)
|
|
|
326 |
img_var = gr.Image(label="Source Image", type="numpy", height=400, scale=4)
|
327 |
btn_var = gr.Button("Create Variations ✨", variant="primary", scale=1)
|
328 |
gallery_var = gr.Gallery(label="Variations", columns=2, height="auto", preview=True)
|
329 |
+
|
330 |
+
# CORRECTED inputs list for variation_image
|
331 |
btn_var.click(
|
332 |
variation_image,
|
333 |
+
inputs=[api, img_var] + common_controls, # API key first
|
334 |
outputs=gallery_var,
|
335 |
api_name="variations"
|
336 |
)
|
|
|
339 |
|
340 |
if __name__ == "__main__":
|
341 |
app = build_ui()
|
|
|
|
|
342 |
app.launch(share=os.getenv("GRADIO_SHARE") == "true", debug=True)
|