Spaces:
Runtime error
Runtime error
import pandas as pd | |
import torch | |
from sentence_transformers import SentenceTransformer, util | |
import gradio as gr | |
import json | |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, AutoModelForSequenceClassification | |
import spaces | |
# Load the CSV file with embeddings | |
df = pd.read_csv('RBDx10kstats.csv') | |
df['embedding'] = df['embedding'].apply(json.loads) # Convert JSON string back to list | |
# Convert embeddings to tensor for efficient retrieval | |
embeddings = torch.tensor(df['embedding'].tolist(), device=device) | |
# Load the Sentence Transformer model | |
model = SentenceTransformer('all-MiniLM-L6-v2', device=device) | |
# Load the ai model for response generation | |
tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased-distilled-squad") | |
model_response = AutoModelForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased-distilled-squad").to(device) | |
# Load the NLU model for intent detection | |
nlu_model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased-finetuned-sst-2-english").to(device) | |
# Define the function to find the most relevant document | |
def retrieve_relevant_doc(query): | |
query_embedding = model.encode(query, convert_to_tensor=True, device=device) | |
similarities = util.pytorch_cos_sim(query_embedding, embeddings)[0] | |
best_match_idx = torch.argmax(similarities).item() | |
return df.iloc[best_match_idx]['Abstract'] | |
# Define the function to detect intent | |
def detect_intent(query): | |
inputs = tokenizer(query, return_tensors="pt").to(device) | |
outputs = nlu_model(inputs["input_ids"], attention_mask=inputs["attention_mask"]) | |
intent = torch.argmax(outputs.logits).item() | |
return intent | |
# Define the function to generate a response | |
def generate_response(query): | |
relevant_doc = retrieve_relevant_doc(query) | |
intent = detect_intent(query) | |
if intent == 0: # Handle intent 0 (e.g., informational query) | |
input_text = f"Document: {relevant_doc}\n\nQuestion: {query}\n\nAnswer:" | |
inputs = tokenizer(input_text, return_tensors="pt").to(device) | |
outputs = model_response.generate(inputs["input_ids"], max_length=500) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
elif intent == 1: # Handle intent 1 (e.g., opinion-based query) | |
# Generate a response based on the detected intent | |
response = "I'm not sure I understand your question. Can you please rephrase?" | |
else: | |
response = "I'm not sure I understand your question. Can you please rephrase?" | |
return response | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs=gr.Textbox(lines=2, placeholder="Enter your query here..."), | |
outputs="text", | |
title="RAG Chatbot", | |
description="This chatbot retrieves relevant documents based on your query and generates responses using ai models." | |
) | |
# Launch the Gradio interface | |
iface.launch() |