File size: 2,993 Bytes
e7abd03
 
716f829
 
e7abd03
fcb1289
0e045b0
d0ab9b7
716f829
 
 
e7abd03
716f829
d0ab9b7
 
 
 
e7abd03
fcb1289
 
 
 
 
 
e7abd03
716f829
0e045b0
716f829
d0ab9b7
716f829
 
 
b71f887
fcb1289
 
 
 
 
 
 
 
d0ab9b7
0e045b0
716f829
 
fcb1289
 
 
 
 
 
 
 
 
 
 
d0ab9b7
e7abd03
 
716f829
 
e3be5c3
6f729e6
e7abd03
fcb1289
6f729e6
 
716f829
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import pandas as pd
import torch
from sentence_transformers import SentenceTransformer, util
import gradio as gr
import json
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, AutoModelForSequenceClassification
import spaces

# Load the CSV file with embeddings
df = pd.read_csv('RBDx10kstats.csv')
df['embedding'] = df['embedding'].apply(json.loads)  # Convert JSON string back to list

# Convert embeddings to tensor for efficient retrieval
embeddings = torch.tensor(df['embedding'].tolist(), device=device)

# Load the Sentence Transformer model
model = SentenceTransformer('all-MiniLM-L6-v2', device=device)

# Load the ai model for response generation
tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased-distilled-squad")
model_response = AutoModelForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased-distilled-squad").to(device)

# Load the NLU model for intent detection
nlu_model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased-finetuned-sst-2-english").to(device)

# Define the function to find the most relevant document
@spaces.GPU(duration=120)
def retrieve_relevant_doc(query):
    query_embedding = model.encode(query, convert_to_tensor=True, device=device)
    similarities = util.pytorch_cos_sim(query_embedding, embeddings)[0]
    best_match_idx = torch.argmax(similarities).item()
    return df.iloc[best_match_idx]['Abstract']

# Define the function to detect intent
@spaces.GPU(duration=120)
def detect_intent(query):
    inputs = tokenizer(query, return_tensors="pt").to(device)
    outputs = nlu_model(inputs["input_ids"], attention_mask=inputs["attention_mask"])
    intent = torch.argmax(outputs.logits).item()
    return intent

# Define the function to generate a response
@spaces.GPU(duration=120)
def generate_response(query):
    relevant_doc = retrieve_relevant_doc(query)
    intent = detect_intent(query)
    if intent == 0:  # Handle intent 0 (e.g., informational query)
        input_text = f"Document: {relevant_doc}\n\nQuestion: {query}\n\nAnswer:"
        inputs = tokenizer(input_text, return_tensors="pt").to(device)
        outputs = model_response.generate(inputs["input_ids"], max_length=500)
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    elif intent == 1:  # Handle intent 1 (e.g., opinion-based query)
        # Generate a response based on the detected intent
        response = "I'm not sure I understand your question. Can you please rephrase?"
    else:
        response = "I'm not sure I understand your question. Can you please rephrase?"
    return response

# Create a Gradio interface
iface = gr.Interface(
    fn=generate_response,
    inputs=gr.Textbox(lines=2, placeholder="Enter your query here..."),
    outputs="text",
    title="RAG Chatbot",
    description="This chatbot retrieves relevant documents based on your query and generates responses using ai models."
)

# Launch the Gradio interface
iface.launch()