Yoxas commited on
Commit
0e045b0
·
verified ·
1 Parent(s): 260ed34

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -0
app.py CHANGED
@@ -4,6 +4,7 @@ from sentence_transformers import SentenceTransformer, util
4
  import gradio as gr
5
  import json
6
  from transformers import AutoTokenizer, AutoModelForCausalLM
 
7
 
8
  # Ensure you have GPU support
9
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
@@ -23,6 +24,7 @@ llama_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
23
  llama_model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(device)
24
 
25
  # Define the function to find the most relevant document
 
26
  def retrieve_relevant_doc(query):
27
  query_embedding = model.encode(query, convert_to_tensor=True, device=device)
28
  similarities = util.pytorch_cos_sim(query_embedding, embeddings)[0]
@@ -30,6 +32,7 @@ def retrieve_relevant_doc(query):
30
  return df.iloc[best_match_idx]['Abstract']
31
 
32
  # Define the function to generate a response
 
33
  def generate_response(query):
34
  relevant_doc = retrieve_relevant_doc(query)
35
  input_text = f"Document: {relevant_doc}\n\nQuestion: {query}\n\nAnswer:"
 
4
  import gradio as gr
5
  import json
6
  from transformers import AutoTokenizer, AutoModelForCausalLM
7
+ import spaces
8
 
9
  # Ensure you have GPU support
10
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
 
24
  llama_model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(device)
25
 
26
  # Define the function to find the most relevant document
27
+ @spaces.GPU(duration=120)
28
  def retrieve_relevant_doc(query):
29
  query_embedding = model.encode(query, convert_to_tensor=True, device=device)
30
  similarities = util.pytorch_cos_sim(query_embedding, embeddings)[0]
 
32
  return df.iloc[best_match_idx]['Abstract']
33
 
34
  # Define the function to generate a response
35
+ @spaces.GPU(duration=120)
36
  def generate_response(query):
37
  relevant_doc = retrieve_relevant_doc(query)
38
  input_text = f"Document: {relevant_doc}\n\nQuestion: {query}\n\nAnswer:"