Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
# Load the car classification model | |
pipe = pipeline("image-classification", model="SriramSridhar78/sriram-car-classifier") | |
# Define the prediction function | |
def predict(input_img): | |
predictions = pipe(input_img) | |
return input_img, {p["label"]: p["score"] for p in predictions} | |
# Create the Gradio interface | |
gradio_app = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(label="Upload Car Image", sources=['upload', 'webcam'], type="pil"), | |
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Car Model Type", num_top_classes=3)], | |
title="Car Classifier", | |
description="Upload an image of a car and get the predicted class" | |
) | |
if __name__ == "__main__": | |
gradio_app.launch() | |