car_classifier / app.py
YosuNamgay's picture
Create app.py
d373bb3 verified
raw
history blame contribute delete
756 Bytes
import gradio as gr
from transformers import pipeline
# Load the car classification model
pipe = pipeline("image-classification", model="SriramSridhar78/sriram-car-classifier")
# Define the prediction function
def predict(input_img):
predictions = pipe(input_img)
return input_img, {p["label"]: p["score"] for p in predictions}
# Create the Gradio interface
gradio_app = gr.Interface(
fn=predict,
inputs=gr.Image(label="Upload Car Image", sources=['upload', 'webcam'], type="pil"),
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Car Model Type", num_top_classes=3)],
title="Car Classifier",
description="Upload an image of a car and get the predicted class"
)
if __name__ == "__main__":
gradio_app.launch()