File size: 756 Bytes
d373bb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import gradio as gr
from transformers import pipeline

# Load the car classification model
pipe = pipeline("image-classification", model="SriramSridhar78/sriram-car-classifier")

# Define the prediction function
def predict(input_img):
    predictions = pipe(input_img)
    return input_img, {p["label"]: p["score"] for p in predictions}

# Create the Gradio interface
gradio_app = gr.Interface(
    fn=predict,
    inputs=gr.Image(label="Upload Car Image", sources=['upload', 'webcam'], type="pil"),
    outputs=[gr.Image(label="Processed Image"), gr.Label(label="Car Model Type", num_top_classes=3)],
    title="Car Classifier",
    description="Upload an image of a car and get the predicted class"
)

if __name__ == "__main__":
    gradio_app.launch()