Yehor's picture
Update app.py
f0c1731 verified
raw
history blame contribute delete
8.7 kB
import sys
import time
import subprocess
from importlib.metadata import version
import spaces
import torch
import torchaudio
import torchaudio.transforms as T
import gradio as gr
from transformers import AutoModelForCTC, Wav2Vec2BertProcessor
from torchaudio.models.decoder import ctc_decoder
# Install kenlm
res = subprocess.check_output(
"pip install https://github.com/kpu/kenlm/archive/master.zip --no-build-isolation",
stderr=subprocess.STDOUT,
shell=True)
print(res)
use_cuda = torch.cuda.is_available()
if use_cuda:
print('CUDA is available, setting correct inference_device variable.')
device = 'cuda'
torch_dtype = torch.float16
else:
device = 'cpu'
torch_dtype = torch.float32
# Load the KenLM model
decoder = ctc_decoder(
lexicon='lm/model_lexicon.txt',
tokens='lm/model_tokens_w2v2.txt',
lm='lm/lm.binary',
nbest=1,
beam_size=100,
blank_token="<pad>",
)
# Config
model_name = "Yehor/w2v-bert-uk-v2.1-fp16"
min_duration = 0.5
max_duration = 60
concurrency_limit = 5
use_torch_compile = False
# Load the model
asr_model = AutoModelForCTC.from_pretrained(model_name, torch_dtype=torch_dtype, device_map=device)
processor = Wav2Vec2BertProcessor.from_pretrained(model_name)
if use_torch_compile:
asr_model = torch.compile(asr_model)
# Elements
examples = [
"example_1.wav",
"example_2.wav",
"example_3.wav",
"example_4.wav",
"example_5.wav",
"example_6.wav",
]
examples_table = """
| File | Text |
| ------------- | ------------- |
| `example_1.wav` | тема про яку не люблять говорити офіційні джерела у генштабі і міноборони це хімічна зброя окупанти вже тривалий час використовують хімічну зброю заборонену |
| `example_2.wav` | всіма конвенціями якщо спочатку це були гранати з дронів то тепер фіксують випадки застосування |
| `example_3.wav` | хімічних снарядів причому склад отруйної речовони різний а отже й наслідки для наших військових теж різні |
| `example_4.wav` | використовує на фронті все що має і хімічна зброя не вийняток тож з чим маємо справу розбиралася марія моганисян |
| `example_5.wav` | двох тисяч випадків застосування росіянами боєприпасів споряджених небезпечними хімічними речовинами |
| `example_6.wav` | на всі писані норми марія моганисян олександр моторний спецкор марафон єдині новини |
""".strip()
# https://www.tablesgenerator.com/markdown_tables
authors_table = """
## Authors
Follow them in social networks and **contact** if you need any help or have any questions:
| <img src="https://avatars.githubusercontent.com/u/7875085?v=4" width="100"> **Yehor Smoliakov** |
|-------------------------------------------------------------------------------------------------|
| https://t.me/smlkw in Telegram |
| https://x.com/yehor_smoliakov at X |
| https://github.com/egorsmkv at GitHub |
| https://huggingface.co/Yehor at Hugging Face |
| or use [email protected] |
""".strip()
description_head = f"""
# Speech-to-Text for Ukrainian v2.1 with LM
## Overview
This space uses https://huggingface.co/{model_name} and https://huggingface.co/Yehor/kenlm-uk/tree/main/news/lm-4gram-500k models to recognize audio files.
> Due to resource limitations, audio duration **must not** exceed **{max_duration}** seconds.
""".strip()
description_foot = f"""
{authors_table}
""".strip()
transcription_value = """
Recognized text will appear here.
Choose **an example file** below the Run button, upload **your audio file**, or use **the microphone** to record something.
""".strip()
tech_env = f"""
#### Environment
- Python: {sys.version}
- Torch device: {device}
- Torch dtype: {torch_dtype}
- Use torch.compile: {use_torch_compile}
""".strip()
tech_libraries = f"""
#### Libraries
- torch: {version('torch')}
- torchaudio: {version('torchaudio')}
- transformers: {version('transformers')}
- accelerate: {version('accelerate')}
- gradio: {version('gradio')}
""".strip()
@spaces.GPU
def inference(audio_path, progress=gr.Progress()):
if not audio_path:
raise gr.Error("Please upload an audio file.")
gr.Info("Starting...", duration=1)
progress(0, desc="Recognizing")
meta = torchaudio.info(audio_path)
duration = meta.num_frames / meta.sample_rate
if duration < min_duration:
raise gr.Error(
f"The duration of the file is less than {min_duration} seconds, it is {round(duration, 2)} seconds."
)
if duration > max_duration:
raise gr.Error(f"The duration of the file exceeds {max_duration} seconds.")
paths = [
audio_path,
]
results = []
for path in progress.tqdm(paths, desc="Recognizing...", unit="file"):
t0 = time.time()
meta = torchaudio.info(audio_path)
audio_duration = meta.num_frames / meta.sample_rate
audio_input, sr = torchaudio.load(path)
if meta.num_channels > 1:
audio_input = torch.mean(audio_input, dim=0, keepdim=True)
if meta.sample_rate != 16_000:
resampler = T.Resample(sr, 16_000, dtype=audio_input.dtype)
audio_input = resampler(audio_input)
audio_input = audio_input.squeeze().numpy()
features = processor([audio_input], sampling_rate=16_000).input_features
features = torch.tensor(features).to(device)
if torch_dtype == torch.float16:
features = features.half()
with torch.inference_mode():
logits = asr_model(features).logits
predicted_ids = torch.argmax(logits, dim=-1)
predictions = processor.batch_decode(predicted_ids)
print("Greedy search:", predicted_ids)
# Decode using KenLM
decoded = decoder(logits.cpu().to(torch.float32))
batch_tokens = [decoder.idxs_to_tokens(hypo[0].tokens) for hypo in decoded]
transcripts = ["".join(tokens) for tokens in batch_tokens]
predictions = [it.replace('|', ' ').strip() for it in transcripts]
print("KenLM decoded:", predictions)
if not predictions:
predictions = "-"
elapsed_time = round(time.time() - t0, 2)
rtf = round(elapsed_time / audio_duration, 4)
audio_duration = round(audio_duration, 2)
results.append(
{
"path": path.split("/")[-1],
"transcription": "\n".join(predictions),
"audio_duration": audio_duration,
"rtf": rtf,
}
)
gr.Success("Finished!", duration=0.5)
result_texts = []
for result in results:
result_texts.append(f'**{result["path"]}**')
result_texts.append("\n\n")
result_texts.append(f'> {result["transcription"]}')
result_texts.append("\n\n")
result_texts.append(f'**Audio duration**: {result["audio_duration"]}')
result_texts.append("\n")
result_texts.append(f'**Real-Time Factor**: {result["rtf"]}')
return "\n".join(result_texts)
demo = gr.Blocks(
title="Speech-to-Text for Ukrainian",
analytics_enabled=False,
theme=gr.themes.Base(),
)
with demo:
gr.Markdown(description_head)
gr.Markdown("## Usage")
with gr.Column():
audio_file = gr.Audio(label="Audio file", type="filepath")
transcription = gr.Markdown(
label="Transcription",
value=transcription_value,
)
gr.Button("Run").click(
inference,
concurrency_limit=concurrency_limit,
inputs=audio_file,
outputs=transcription,
)
with gr.Row():
gr.Examples(label="Choose an example", inputs=audio_file, examples=examples)
gr.Markdown(examples_table)
gr.Markdown(description_foot)
gr.Markdown("### Gradio app uses:")
gr.Markdown(tech_env)
gr.Markdown(tech_libraries)
if __name__ == "__main__":
demo.queue()
demo.launch()