File size: 8,698 Bytes
572af8f
 
e64bc37
572af8f
 
 
afaacd2
 
572af8f
 
 
 
 
 
 
c5e9417
572af8f
e64bc37
 
814fd00
e64bc37
 
 
 
afaacd2
 
 
 
 
 
 
 
 
 
c5e9417
 
 
 
 
 
a2134a4
 
c5e9417
 
572af8f
6a16f9a
572af8f
 
 
 
 
 
 
 
29804d1
572af8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff3fdac
572af8f
 
 
f0c1731
572af8f
 
 
 
 
 
 
 
 
 
 
09c5b31
572af8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29804d1
572af8f
 
 
 
afaacd2
572af8f
 
 
 
3a51ba8
572af8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5e9417
 
 
 
 
 
 
 
 
572af8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a51ba8
572af8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09c5b31
572af8f
 
 
 
 
 
09c5b31
572af8f
 
 
 
 
 
 
 
 
 
 
 
 
311fa92
572af8f
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import sys
import time
import subprocess

from importlib.metadata import version

import spaces

import torch
import torchaudio
import torchaudio.transforms as T

import gradio as gr

from transformers import AutoModelForCTC, Wav2Vec2BertProcessor
from torchaudio.models.decoder import ctc_decoder

# Install kenlm
res = subprocess.check_output(
    "pip install https://github.com/kpu/kenlm/archive/master.zip --no-build-isolation",
    stderr=subprocess.STDOUT,
    shell=True)
print(res)

use_cuda = torch.cuda.is_available()

if use_cuda:
    print('CUDA is available, setting correct inference_device variable.')
    device = 'cuda'
    torch_dtype = torch.float16
else:
    device = 'cpu'
    torch_dtype = torch.float32

# Load the KenLM model
decoder = ctc_decoder(
   lexicon='lm/model_lexicon.txt',
   tokens='lm/model_tokens_w2v2.txt',
   lm='lm/lm.binary',
   nbest=1,
   beam_size=100,
   blank_token="<pad>",
)

# Config
model_name = "Yehor/w2v-bert-uk-v2.1-fp16"

min_duration = 0.5
max_duration = 60

concurrency_limit = 5
use_torch_compile = False

# Load the model
asr_model = AutoModelForCTC.from_pretrained(model_name, torch_dtype=torch_dtype, device_map=device)
processor = Wav2Vec2BertProcessor.from_pretrained(model_name)

if use_torch_compile:
    asr_model = torch.compile(asr_model)

# Elements
examples = [
    "example_1.wav",
    "example_2.wav",
    "example_3.wav",
    "example_4.wav",
    "example_5.wav",
    "example_6.wav",
]

examples_table = """
| File  | Text |
| ------------- | ------------- |
| `example_1.wav`  | тема про яку не люблять говорити офіційні джерела у генштабі і міноборони це хімічна зброя окупанти вже тривалий час використовують хімічну зброю заборонену |
| `example_2.wav`  | всіма конвенціями якщо спочатку це були гранати з дронів то тепер фіксують випадки застосування |
| `example_3.wav`  | хімічних снарядів причому склад отруйної речовони різний а отже й наслідки для наших військових теж різні  |
| `example_4.wav`  | використовує на фронті все що має і хімічна зброя не вийняток тож з чим маємо справу розбиралася марія моганисян |
| `example_5.wav`  | двох тисяч випадків застосування росіянами боєприпасів споряджених небезпечними хімічними речовинами |
| `example_6.wav`  | на всі писані норми марія моганисян олександр моторний спецкор марафон єдині новини |
""".strip()

# https://www.tablesgenerator.com/markdown_tables
authors_table = """
## Authors

Follow them in social networks and **contact** if you need any help or have any questions:

| <img src="https://avatars.githubusercontent.com/u/7875085?v=4" width="100"> **Yehor Smoliakov** |
|-------------------------------------------------------------------------------------------------|
| https://t.me/smlkw in Telegram                                                                  |
| https://x.com/yehor_smoliakov at X                                                              |
| https://github.com/egorsmkv at GitHub                                                           |
| https://huggingface.co/Yehor at Hugging Face                                                    |
| or use [email protected]                                                                       |
""".strip()

description_head = f"""
# Speech-to-Text for Ukrainian v2.1 with LM

## Overview

This space uses https://huggingface.co/{model_name} and https://huggingface.co/Yehor/kenlm-uk/tree/main/news/lm-4gram-500k models to recognize audio files.

> Due to resource limitations, audio duration **must not** exceed **{max_duration}** seconds.
""".strip()

description_foot = f"""
{authors_table}
""".strip()

transcription_value = """
Recognized text will appear here.

Choose **an example file** below the Run button, upload **your audio file**, or use **the microphone** to record something.
""".strip()

tech_env = f"""
#### Environment

- Python: {sys.version}
- Torch device: {device}
- Torch dtype: {torch_dtype}
- Use torch.compile: {use_torch_compile}
""".strip()

tech_libraries = f"""
#### Libraries

- torch: {version('torch')}
- torchaudio: {version('torchaudio')}
- transformers: {version('transformers')}
- accelerate: {version('accelerate')}
- gradio: {version('gradio')}
""".strip()


@spaces.GPU
def inference(audio_path, progress=gr.Progress()):
    if not audio_path:
        raise gr.Error("Please upload an audio file.")

    gr.Info("Starting...", duration=1)

    progress(0, desc="Recognizing")

    meta = torchaudio.info(audio_path)
    duration = meta.num_frames / meta.sample_rate

    if duration < min_duration:
        raise gr.Error(
            f"The duration of the file is less than {min_duration} seconds, it is {round(duration, 2)} seconds."
        )
    if duration > max_duration:
        raise gr.Error(f"The duration of the file exceeds {max_duration} seconds.")

    paths = [
        audio_path,
    ]

    results = []

    for path in progress.tqdm(paths, desc="Recognizing...", unit="file"):
        t0 = time.time()

        meta = torchaudio.info(audio_path)
        audio_duration = meta.num_frames / meta.sample_rate

        audio_input, sr = torchaudio.load(path)

        if meta.num_channels > 1:
            audio_input = torch.mean(audio_input, dim=0, keepdim=True)

        if meta.sample_rate != 16_000:
            resampler = T.Resample(sr, 16_000, dtype=audio_input.dtype)
            audio_input = resampler(audio_input)

        audio_input = audio_input.squeeze().numpy()

        features = processor([audio_input], sampling_rate=16_000).input_features
        features = torch.tensor(features).to(device)

        if torch_dtype == torch.float16:
            features = features.half()

        with torch.inference_mode():
            logits = asr_model(features).logits

        predicted_ids = torch.argmax(logits, dim=-1)
        predictions = processor.batch_decode(predicted_ids)
        print("Greedy search:", predicted_ids)

        # Decode using KenLM
        decoded = decoder(logits.cpu().to(torch.float32))
        batch_tokens = [decoder.idxs_to_tokens(hypo[0].tokens) for hypo in decoded]
        transcripts = ["".join(tokens) for tokens in batch_tokens]
        predictions = [it.replace('|', ' ').strip() for it in transcripts]

        print("KenLM decoded:", predictions)

        if not predictions:
            predictions = "-"

        elapsed_time = round(time.time() - t0, 2)
        rtf = round(elapsed_time / audio_duration, 4)
        audio_duration = round(audio_duration, 2)

        results.append(
            {
                "path": path.split("/")[-1],
                "transcription": "\n".join(predictions),
                "audio_duration": audio_duration,
                "rtf": rtf,
            }
        )

    gr.Success("Finished!", duration=0.5)

    result_texts = []

    for result in results:
        result_texts.append(f'**{result["path"]}**')
        result_texts.append("\n\n")
        result_texts.append(f'> {result["transcription"]}')
        result_texts.append("\n\n")
        result_texts.append(f'**Audio duration**: {result["audio_duration"]}')
        result_texts.append("\n")
        result_texts.append(f'**Real-Time Factor**: {result["rtf"]}')

    return "\n".join(result_texts)


demo = gr.Blocks(
    title="Speech-to-Text for Ukrainian",
    analytics_enabled=False,
    theme=gr.themes.Base(),
)

with demo:
    gr.Markdown(description_head)

    gr.Markdown("## Usage")

    with gr.Column():
        audio_file = gr.Audio(label="Audio file", type="filepath")
        transcription = gr.Markdown(
            label="Transcription",
            value=transcription_value,
        )

    gr.Button("Run").click(
        inference,
        concurrency_limit=concurrency_limit,
        inputs=audio_file,
        outputs=transcription,
    )

    with gr.Row():
        gr.Examples(label="Choose an example", inputs=audio_file, examples=examples)

    gr.Markdown(examples_table)

    gr.Markdown(description_foot)

    gr.Markdown("### Gradio app uses:")
    gr.Markdown(tech_env)
    gr.Markdown(tech_libraries)

if __name__ == "__main__":
    demo.queue()
    demo.launch()