|
import os |
|
import gradio as gr |
|
import requests |
|
import inspect |
|
import pandas as pd |
|
from smolagents import HfApiModel |
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
class GAIAAgent: |
|
def __init__(self): |
|
print("GAIAAgent with HfApiModel initialized.") |
|
self.model = gr.load( |
|
"models/deepseek-ai/DeepSeek-R1", |
|
provider="novita", |
|
) |
|
|
|
def format_prompt(self, question: str, file_content: str = None) -> str: |
|
prompt = ( |
|
"You are a helpful AI agent solving a question from the GAIA benchmark. " |
|
"Respond only with the final answer." |
|
) |
|
if file_content: |
|
prompt += f"\nAttached File Content:\n{file_content}\n" |
|
prompt += f"\nQuestion: {question}\nAnswer:" |
|
return prompt |
|
|
|
def read_file(self, filename: str) -> str: |
|
filepath = os.path.join("./", filename) |
|
if filename.endswith(".txt") and os.path.exists(filepath): |
|
with open(filepath, "r") as file: |
|
return file.read()[:1000] |
|
return "" |
|
|
|
def __call__(self, question: str, file_name: str = None) -> str: |
|
file_content = self.read_file(file_name) if file_name else None |
|
prompt = self.format_prompt(question, file_content) |
|
try: |
|
print("Prompt sent to model:", prompt) |
|
result = self.model(prompt) |
|
print("Model raw result:", result) |
|
if not result or not isinstance(result, str): |
|
return "AGENT ERROR: Empty or invalid response" |
|
return result.strip().split("Answer:")[-1].strip() |
|
except Exception as e: |
|
print(f"Model inference failed: {e}") |
|
return f"AGENT ERROR: {e}" |
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
space_id = os.getenv("SPACE_ID") |
|
if profile: |
|
username = f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
try: |
|
agent = GAIAAgent() |
|
except Exception as e: |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
|
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
except Exception as e: |
|
return f"Error fetching questions: {e}", None |
|
|
|
results_log = [] |
|
answers_payload = [] |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
file_name = item.get("file_name") |
|
if not task_id or question_text is None: |
|
continue |
|
try: |
|
submitted_answer = agent(question_text, file_name) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
|
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
return final_status, pd.DataFrame(results_log) |
|
except Exception as e: |
|
return f"Submission Failed: {e}", pd.DataFrame(results_log) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# GAIA Agent Evaluation Runner") |
|
gr.Markdown(""" |
|
**Instructions:** |
|
1. Log in to your Hugging Face account. |
|
2. Click the button to run the agent and submit answers. |
|
3. Your score will be printed below. |
|
""") |
|
gr.LoginButton() |
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("Launching GAIA agent app...") |
|
demo.launch(debug=True, share=False) |