File size: 5,063 Bytes
10e9b7d
 
eccf8e4
5a04eaf
3c4371f
70575e8
5a04eaf
10e9b7d
e80aab9
3db6293
e80aab9
dc2edb0
 
31243f4
70575e8
7b67e95
580e81a
7b67e95
ee2d2fa
dc2edb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8601660
dc2edb0
 
 
 
 
8601660
 
 
 
 
 
 
 
 
 
0b2a728
 
dc2edb0
 
7e4a06b
dc2edb0
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
31243f4
dc2edb0
31243f4
 
dc2edb0
36ed51a
3c4371f
eccf8e4
31243f4
7d65c66
31243f4
7d65c66
dc2edb0
e80aab9
7d65c66
 
31243f4
 
 
dc2edb0
31243f4
 
 
dc2edb0
7d65c66
 
31243f4
dc2edb0
31243f4
 
 
 
7d65c66
e80aab9
 
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
dc2edb0
7d65c66
dc2edb0
e80aab9
 
 
dc2edb0
 
e514fd7
dc2edb0
 
 
 
7e4a06b
31243f4
9088b99
7d65c66
e80aab9
31243f4
 
 
e80aab9
 
 
dc2edb0
8601660
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import HfApiModel


# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Enhanced Agent Definition ---
class GAIAAgent:
    def __init__(self):
        print("GAIAAgent with HfApiModel initialized.")
        self.model = gr.load(
           "models/deepseek-ai/DeepSeek-R1",
           provider="novita",
        )

    def format_prompt(self, question: str, file_content: str = None) -> str:
        prompt = (
            "You are a helpful AI agent solving a question from the GAIA benchmark. "
            "Respond only with the final answer."
        )
        if file_content:
            prompt += f"\nAttached File Content:\n{file_content}\n"
        prompt += f"\nQuestion: {question}\nAnswer:"
        return prompt

    def read_file(self, filename: str) -> str:
        filepath = os.path.join("./", filename)
        if filename.endswith(".txt") and os.path.exists(filepath):
            with open(filepath, "r") as file:
                return file.read()[:1000]  # limit to 1000 chars
        return ""

    def __call__(self, question: str, file_name: str = None) -> str:
        file_content = self.read_file(file_name) if file_name else None
        prompt = self.format_prompt(question, file_content)
        try:
            print("Prompt sent to model:", prompt)
            result = self.model(prompt)
            print("Model raw result:", result)
            if not result or not isinstance(result, str):
                return "AGENT ERROR: Empty or invalid response"
            return result.strip().split("Answer:")[-1].strip()
        except Exception as e:
            print(f"Model inference failed: {e}")
            return f"AGENT ERROR: {e}"


def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = GAIAAgent()
    except Exception as e:
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
    except Exception as e:
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        file_name = item.get("file_name")
        if not task_id or question_text is None:
            continue
        try:
            submitted_answer = agent(question_text, file_name)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}

    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        return final_status, pd.DataFrame(results_log)
    except Exception as e:
        return f"Submission Failed: {e}", pd.DataFrame(results_log)


with gr.Blocks() as demo:
    gr.Markdown("# GAIA Agent Evaluation Runner")
    gr.Markdown("""
        **Instructions:**
        1. Log in to your Hugging Face account.
        2. Click the button to run the agent and submit answers.
        3. Your score will be printed below.
    """)
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("Launching GAIA agent app...")
    demo.launch(debug=True, share=False)