Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,48 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
|
|
6 |
|
7 |
-
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
-
# ---
|
12 |
-
|
13 |
-
class BasicAgent:
|
14 |
def __init__(self):
|
15 |
-
print("
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
if profile:
|
31 |
-
username= f"{profile.username}"
|
32 |
print(f"User logged in: {username}")
|
33 |
else:
|
34 |
print("User not logged in.")
|
@@ -38,66 +52,40 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
38 |
questions_url = f"{api_url}/questions"
|
39 |
submit_url = f"{api_url}/submit"
|
40 |
|
41 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
try:
|
43 |
-
agent =
|
44 |
except Exception as e:
|
45 |
-
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
47 |
-
|
48 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
-
print(agent_code)
|
50 |
|
51 |
-
# 2. Fetch Questions
|
52 |
-
print(f"Fetching questions from: {questions_url}")
|
53 |
try:
|
54 |
response = requests.get(questions_url, timeout=15)
|
55 |
response.raise_for_status()
|
56 |
questions_data = response.json()
|
57 |
-
if not questions_data:
|
58 |
-
print("Fetched questions list is empty.")
|
59 |
-
return "Fetched questions list is empty or invalid format.", None
|
60 |
-
print(f"Fetched {len(questions_data)} questions.")
|
61 |
-
except requests.exceptions.RequestException as e:
|
62 |
-
print(f"Error fetching questions: {e}")
|
63 |
-
return f"Error fetching questions: {e}", None
|
64 |
-
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
66 |
-
print(f"Response text: {response.text[:500]}")
|
67 |
-
return f"Error decoding server response for questions: {e}", None
|
68 |
except Exception as e:
|
69 |
-
|
70 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
71 |
|
72 |
-
# 3. Run your Agent
|
73 |
results_log = []
|
74 |
answers_payload = []
|
75 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
76 |
for item in questions_data:
|
77 |
task_id = item.get("task_id")
|
78 |
question_text = item.get("question")
|
|
|
79 |
if not task_id or question_text is None:
|
80 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
continue
|
82 |
try:
|
83 |
-
submitted_answer = agent(question_text)
|
84 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
except Exception as e:
|
87 |
-
|
88 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
89 |
|
90 |
if not answers_payload:
|
91 |
-
print("Agent did not produce any answers to submit.")
|
92 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
93 |
|
94 |
-
# 4. Prepare Submission
|
95 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
96 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
97 |
-
print(status_update)
|
98 |
|
99 |
-
# 5. Submit
|
100 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
101 |
try:
|
102 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
103 |
response.raise_for_status()
|
@@ -109,61 +97,22 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
109 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
110 |
f"Message: {result_data.get('message', 'No message received.')}"
|
111 |
)
|
112 |
-
|
113 |
-
results_df = pd.DataFrame(results_log)
|
114 |
-
return final_status, results_df
|
115 |
-
except requests.exceptions.HTTPError as e:
|
116 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
117 |
-
try:
|
118 |
-
error_json = e.response.json()
|
119 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
120 |
-
except requests.exceptions.JSONDecodeError:
|
121 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
122 |
-
status_message = f"Submission Failed: {error_detail}"
|
123 |
-
print(status_message)
|
124 |
-
results_df = pd.DataFrame(results_log)
|
125 |
-
return status_message, results_df
|
126 |
-
except requests.exceptions.Timeout:
|
127 |
-
status_message = "Submission Failed: The request timed out."
|
128 |
-
print(status_message)
|
129 |
-
results_df = pd.DataFrame(results_log)
|
130 |
-
return status_message, results_df
|
131 |
-
except requests.exceptions.RequestException as e:
|
132 |
-
status_message = f"Submission Failed: Network error - {e}"
|
133 |
-
print(status_message)
|
134 |
-
results_df = pd.DataFrame(results_log)
|
135 |
-
return status_message, results_df
|
136 |
except Exception as e:
|
137 |
-
|
138 |
-
print(status_message)
|
139 |
-
results_df = pd.DataFrame(results_log)
|
140 |
-
return status_message, results_df
|
141 |
|
142 |
|
143 |
-
# --- Build Gradio Interface using Blocks ---
|
144 |
with gr.Blocks() as demo:
|
145 |
-
gr.Markdown("#
|
146 |
-
gr.Markdown(
|
147 |
-
"""
|
148 |
**Instructions:**
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
---
|
155 |
-
**Disclaimers:**
|
156 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
158 |
-
"""
|
159 |
-
)
|
160 |
-
|
161 |
gr.LoginButton()
|
162 |
-
|
163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
-
|
165 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
-
# Removed max_rows=10 from DataFrame constructor
|
167 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
|
169 |
run_button.click(
|
@@ -172,25 +121,5 @@ with gr.Blocks() as demo:
|
|
172 |
)
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
-
print("
|
176 |
-
|
177 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
178 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
179 |
-
|
180 |
-
if space_host_startup:
|
181 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
182 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
183 |
-
else:
|
184 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
185 |
-
|
186 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
187 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
188 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
189 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
190 |
-
else:
|
191 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
192 |
-
|
193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
-
|
195 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
196 |
-
demo.launch(debug=True, share=False)
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
5 |
+
from smolagents import CodeAgent, DuckDuckGoSearchTool, OpenAIServerModel
|
6 |
|
|
|
7 |
# --- Constants ---
|
8 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
9 |
|
10 |
+
# --- Enhanced Agent Definition ---
|
11 |
+
class GAIAAgent:
|
|
|
12 |
def __init__(self):
|
13 |
+
print("GAIAAgent initialized.")
|
14 |
+
model = OpenAIServerModel(model_id="gpt-4o")
|
15 |
+
search_tool = DuckDuckGoSearchTool()
|
16 |
+
self.agent = CodeAgent(model=model, tools=[search_tool])
|
17 |
+
|
18 |
+
def format_prompt(self, question: str, file_content: str = None) -> str:
|
19 |
+
prompt = (
|
20 |
+
"You are a helpful AI agent solving a question from the GAIA benchmark. "
|
21 |
+
"Respond only with the final answer."
|
22 |
+
)
|
23 |
+
if file_content:
|
24 |
+
prompt += f"\nAttached File Content:\n{file_content}\n"
|
25 |
+
prompt += f"\nQuestion: {question}\nAnswer:"
|
26 |
+
return prompt
|
27 |
+
|
28 |
+
def read_file(self, filename: str) -> str:
|
29 |
+
filepath = os.path.join("./", filename)
|
30 |
+
if filename.endswith(".txt") and os.path.exists(filepath):
|
31 |
+
with open(filepath, "r") as file:
|
32 |
+
return file.read()[:1000] # limit to 1000 chars
|
33 |
+
return ""
|
34 |
+
|
35 |
+
def __call__(self, question: str, file_name: str = None) -> str:
|
36 |
+
file_content = self.read_file(file_name) if file_name else None
|
37 |
+
prompt = self.format_prompt(question, file_content)
|
38 |
+
result = self.agent.run(prompt)
|
39 |
+
return result.strip()
|
40 |
+
|
41 |
+
|
42 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
43 |
+
space_id = os.getenv("SPACE_ID")
|
44 |
if profile:
|
45 |
+
username = f"{profile.username}"
|
46 |
print(f"User logged in: {username}")
|
47 |
else:
|
48 |
print("User not logged in.")
|
|
|
52 |
questions_url = f"{api_url}/questions"
|
53 |
submit_url = f"{api_url}/submit"
|
54 |
|
|
|
55 |
try:
|
56 |
+
agent = GAIAAgent()
|
57 |
except Exception as e:
|
|
|
58 |
return f"Error initializing agent: {e}", None
|
59 |
+
|
60 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
|
|
61 |
|
|
|
|
|
62 |
try:
|
63 |
response = requests.get(questions_url, timeout=15)
|
64 |
response.raise_for_status()
|
65 |
questions_data = response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
except Exception as e:
|
67 |
+
return f"Error fetching questions: {e}", None
|
|
|
68 |
|
|
|
69 |
results_log = []
|
70 |
answers_payload = []
|
|
|
71 |
for item in questions_data:
|
72 |
task_id = item.get("task_id")
|
73 |
question_text = item.get("question")
|
74 |
+
file_name = item.get("file_name")
|
75 |
if not task_id or question_text is None:
|
|
|
76 |
continue
|
77 |
try:
|
78 |
+
submitted_answer = agent(question_text, file_name)
|
79 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
80 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
81 |
except Exception as e:
|
82 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
83 |
|
84 |
if not answers_payload:
|
|
|
85 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
86 |
|
|
|
87 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
|
|
|
88 |
|
|
|
|
|
89 |
try:
|
90 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
91 |
response.raise_for_status()
|
|
|
97 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
98 |
f"Message: {result_data.get('message', 'No message received.')}"
|
99 |
)
|
100 |
+
return final_status, pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
except Exception as e:
|
102 |
+
return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
|
|
|
|
|
|
103 |
|
104 |
|
|
|
105 |
with gr.Blocks() as demo:
|
106 |
+
gr.Markdown("# GAIA Agent Evaluation Runner")
|
107 |
+
gr.Markdown("""
|
|
|
108 |
**Instructions:**
|
109 |
+
1. Log in to your Hugging Face account.
|
110 |
+
2. Click the button to run the agent and submit answers.
|
111 |
+
3. Your score will be printed below.
|
112 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
gr.LoginButton()
|
|
|
114 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
115 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
116 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
117 |
|
118 |
run_button.click(
|
|
|
121 |
)
|
122 |
|
123 |
if __name__ == "__main__":
|
124 |
+
print("Launching GAIA agent app...")
|
125 |
+
demo.launch(debug=True, share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|