YajieXu commited on
Commit
dc2edb0
·
verified ·
1 Parent(s): 81917a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -122
app.py CHANGED
@@ -1,34 +1,48 @@
1
  import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
 
6
 
7
- # (Keep Constants as is)
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
  def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
- """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
- """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  if profile:
31
- username= f"{profile.username}"
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
@@ -38,66 +52,40 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
- agent = BasicAgent()
44
  except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
 
51
- # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
53
  try:
54
  response = requests.get(questions_url, timeout=15)
55
  response.raise_for_status()
56
  questions_data = response.json()
57
- if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
- print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
  except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
 
72
- # 3. Run your Agent
73
  results_log = []
74
  answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
76
  for item in questions_data:
77
  task_id = item.get("task_id")
78
  question_text = item.get("question")
 
79
  if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
  continue
82
  try:
83
- submitted_answer = agent(question_text)
84
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
 
90
  if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
- # 4. Prepare Submission
95
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
 
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
  try:
102
  response = requests.post(submit_url, json=submission_data, timeout=60)
103
  response.raise_for_status()
@@ -109,61 +97,22 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
109
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
  f"Message: {result_data.get('message', 'No message received.')}"
111
  )
112
- print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
  except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
 
142
 
143
- # --- Build Gradio Interface using Blocks ---
144
  with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
- gr.Markdown(
147
- """
148
  **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
- """
159
- )
160
-
161
  gr.LoginButton()
162
-
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
  run_button.click(
@@ -172,25 +121,5 @@ with gr.Blocks() as demo:
172
  )
173
 
174
  if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
- space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
-
180
- if space_host_startup:
181
- print(f"✅ SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
- else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
- print(f"✅ SPACE_ID found: {space_id_startup}")
188
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
- else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
1
  import os
2
  import gradio as gr
3
  import requests
 
4
  import pandas as pd
5
+ from smolagents import CodeAgent, DuckDuckGoSearchTool, OpenAIServerModel
6
 
 
7
  # --- Constants ---
8
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
9
 
10
+ # --- Enhanced Agent Definition ---
11
+ class GAIAAgent:
 
12
  def __init__(self):
13
+ print("GAIAAgent initialized.")
14
+ model = OpenAIServerModel(model_id="gpt-4o")
15
+ search_tool = DuckDuckGoSearchTool()
16
+ self.agent = CodeAgent(model=model, tools=[search_tool])
17
+
18
+ def format_prompt(self, question: str, file_content: str = None) -> str:
19
+ prompt = (
20
+ "You are a helpful AI agent solving a question from the GAIA benchmark. "
21
+ "Respond only with the final answer."
22
+ )
23
+ if file_content:
24
+ prompt += f"\nAttached File Content:\n{file_content}\n"
25
+ prompt += f"\nQuestion: {question}\nAnswer:"
26
+ return prompt
27
+
28
+ def read_file(self, filename: str) -> str:
29
+ filepath = os.path.join("./", filename)
30
+ if filename.endswith(".txt") and os.path.exists(filepath):
31
+ with open(filepath, "r") as file:
32
+ return file.read()[:1000] # limit to 1000 chars
33
+ return ""
34
+
35
+ def __call__(self, question: str, file_name: str = None) -> str:
36
+ file_content = self.read_file(file_name) if file_name else None
37
+ prompt = self.format_prompt(question, file_content)
38
+ result = self.agent.run(prompt)
39
+ return result.strip()
40
+
41
+
42
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
43
+ space_id = os.getenv("SPACE_ID")
44
  if profile:
45
+ username = f"{profile.username}"
46
  print(f"User logged in: {username}")
47
  else:
48
  print("User not logged in.")
 
52
  questions_url = f"{api_url}/questions"
53
  submit_url = f"{api_url}/submit"
54
 
 
55
  try:
56
+ agent = GAIAAgent()
57
  except Exception as e:
 
58
  return f"Error initializing agent: {e}", None
59
+
60
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
 
61
 
 
 
62
  try:
63
  response = requests.get(questions_url, timeout=15)
64
  response.raise_for_status()
65
  questions_data = response.json()
 
 
 
 
 
 
 
 
 
 
 
66
  except Exception as e:
67
+ return f"Error fetching questions: {e}", None
 
68
 
 
69
  results_log = []
70
  answers_payload = []
 
71
  for item in questions_data:
72
  task_id = item.get("task_id")
73
  question_text = item.get("question")
74
+ file_name = item.get("file_name")
75
  if not task_id or question_text is None:
 
76
  continue
77
  try:
78
+ submitted_answer = agent(question_text, file_name)
79
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
80
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
81
  except Exception as e:
82
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
83
 
84
  if not answers_payload:
 
85
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
86
 
 
87
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
 
 
88
 
 
 
89
  try:
90
  response = requests.post(submit_url, json=submission_data, timeout=60)
91
  response.raise_for_status()
 
97
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
98
  f"Message: {result_data.get('message', 'No message received.')}"
99
  )
100
+ return final_status, pd.DataFrame(results_log)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
  except Exception as e:
102
+ return f"Submission Failed: {e}", pd.DataFrame(results_log)
 
 
 
103
 
104
 
 
105
  with gr.Blocks() as demo:
106
+ gr.Markdown("# GAIA Agent Evaluation Runner")
107
+ gr.Markdown("""
 
108
  **Instructions:**
109
+ 1. Log in to your Hugging Face account.
110
+ 2. Click the button to run the agent and submit answers.
111
+ 3. Your score will be printed below.
112
+ """)
 
 
 
 
 
 
 
 
113
  gr.LoginButton()
 
114
  run_button = gr.Button("Run Evaluation & Submit All Answers")
 
115
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
116
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
117
 
118
  run_button.click(
 
121
  )
122
 
123
  if __name__ == "__main__":
124
+ print("Launching GAIA agent app...")
125
+ demo.launch(debug=True, share=False)