File size: 8,512 Bytes
f5fb58c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import streamlit as st
import requests
import pandas as pd
import json
import os
from datasets import load_dataset
# Set page configuration
st.set_page_config(
page_title="Huggingface Repository Explorer",
page_icon="π€",
layout="wide",
initial_sidebar_state="expanded"
)
# Title and description
st.title("π€ Huggingface Repository Explorer")
st.markdown("""
This dashboard showcases our models and datasets on Huggingface.
Select a dataset to view sample data.
""")
# Access token will be set up via environment variable in the Huggingface Space
# This way it's not exposed in the code and users don't need to enter it
AUTH_TOKEN = os.environ.get("HF_TOKEN", "")
# HF API endpoints
HF_API_BASE = "https://huggingface.co/api"
# Function to fetch dataset samples using the pre-configured token
def fetch_dataset_samples(dataset_id, n=10):
try:
# Load the dataset in streaming mode
dataset = load_dataset(dataset_id,
split="train",
streaming=True,
token=AUTH_TOKEN)
# Get the first n examples
samples = []
for i, example in enumerate(dataset):
if i >= n:
break
samples.append(example)
return samples
except Exception as e:
st.error(f"Error loading dataset samples: {e}")
return None
# Hard-coded model list
model_data = {
"Model Name": [
"TitanCAProject/Qwen2.5-Coder-7B-Instruct_lora_r16a32-c_sharp",
"TitanCAProject/Qwen2.5-Coder-7B-Instruct_lora_r16a32-python",
"TitanCAProject/Qwen2.5-Coder-7B-Instruct_lora_r16a32-C",
"TitanCAProject/Qwen2.5-Coder-7B-Instruct_lora_r16a32-java",
"TitanCAProject/CodeBERT-javascript"
],
"Description": [
"Qwen2.5 model for the Csharp language",
"Qwen2.5 model for the Python language",
"Qwen2.5 model for the C language",
"Qwen2.5 model for the Jave language",
"CodeBERT model for the Javascript language"
],
"Size (GB)": [0.4, 0.5, 0.9, 1.3, 0.3],
"Last Updated": [
"2024-11-15",
"2024-10-30",
"2024-12-05",
"2024-11-20",
"2024-12-10"
]
}
# Convert to DataFrames
df_models = pd.DataFrame(model_data)
# Function to fetch dataset info including size and sample count
def fetch_dataset_info(dataset_id):
headers = {"Authorization": f"Bearer {AUTH_TOKEN}"}
size_url = f"https://datasets-server.huggingface.co/size?dataset={dataset_id}"
url = f"{HF_API_BASE}/datasets/{dataset_id}"
try:
response = requests.get(size_url, headers=headers)
if response.status_code != 200:
st.warning(f"Error fetching dataset size info: {response.status_code}")
return None
dataset_info = response.json()
# Get size information - need to calculate
size_bytes = dataset_info['size']['dataset'].get('num_bytes_original_files', 0)
# Convert to MB for display
size_mb = round(size_bytes / (1024 * 1024), 2) if size_bytes else None
# Get row count information
sample_count = dataset_info['size']['dataset'].get('num_rows', 0)
response = requests.get(url, headers=headers)
if response.status_code != 200:
st.warning(f"Error fetching dataset info: {response.status_code}")
return None
dataset_info = response.json()
result = {
'id': dataset_id,
'description': dataset_info.get('description', 'No description available'),
'size_mb': size_mb,
'sample_count': sample_count,
'last_modified': dataset_info.get('lastModified', 'Unknown')
}
return result
except Exception as e:
st.error(f"Error processing dataset info: {e}")
return None
# Main tabs
tab1, tab2 = st.tabs(["Models", "Datasets"])
# Models Tab
with tab1:
st.header("Models")
# Display models table
st.dataframe(df_models, use_container_width=True)
# Selected model details
st.subheader("Model Details")
selected_model = st.selectbox("Select a model for details", df_models["Model Name"], key="model_select")
if selected_model:
model_details = df_models[df_models["Model Name"] == selected_model].iloc[0]
st.markdown("### " + model_details["Model Name"])
st.markdown(f"**Description**: {model_details['Description']}")
st.markdown(f"**Size**: {model_details['Size (GB)']} GB")
st.markdown(f"**Last Updated**: {model_details['Last Updated']}")
with tab2:
st.header("Datasets")
# List of dataset IDs to display
dataset_ids = [
"YChang1112/test-dataset",
"Anthropic/EconomicIndex"
]
# Get actual dataset info from API
dataset_info_list = []
if AUTH_TOKEN:
with st.spinner("Loading dataset information..."):
for dataset_id in dataset_ids:
info = fetch_dataset_info(dataset_id)
if info:
dataset_info_list.append(info)
else:
st.warning("Authentication token not configured. Unable to fetch dataset information.")
# Create a DataFrame from the collected information
if dataset_info_list:
df_datasets = pd.DataFrame({
"Dataset Name": [info['id'] for info in dataset_info_list],
"Description": [info['description'] for info in dataset_info_list],
"Size (MB)": [info['size_mb'] for info in dataset_info_list],
"Samples": [info['sample_count'] for info in dataset_info_list],
"Last Modified": [info['last_modified'] for info in dataset_info_list]
})
# Display datasets table
st.dataframe(df_datasets, use_container_width=True)
else:
st.error("No dataset information available. Please check your dataset IDs and authentication token.")
# Dataset details with sample preview
st.subheader("Dataset Preview")
if dataset_info_list:
selected_dataset = st.selectbox("Select a dataset to preview",
[info['id'] for info in dataset_info_list],
key="dataset_select")
if selected_dataset:
# Find the dataset info
dataset_info = next((info for info in dataset_info_list if info['id'] == selected_dataset), None)
if dataset_info:
st.markdown(f"### {dataset_info['id']}")
st.markdown(f"**Description**: {dataset_info['description']}")
st.markdown(f"**Size**: {dataset_info['size_mb']} MB")
st.markdown(f"**Total Samples**: {dataset_info['sample_count']:,}")
st.markdown(f"**Last Modified**: {dataset_info['last_modified']}")
# Show dataset samples
st.markdown("### Sample Train Data")
with st.spinner("Fetching dataset samples..."):
samples = fetch_dataset_samples(selected_dataset)
if samples:
# Convert samples to DataFrame if possible
try:
# If it's a list of samples
if isinstance(samples, list) and len(samples) > 0:
# Try to normalize to handle nested structures
df_sample = pd.json_normalize(samples)
st.dataframe(df_sample, use_container_width=True)
# If it's a single sample object
elif isinstance(samples, dict):
df_sample = pd.DataFrame([samples])
st.dataframe(df_sample, use_container_width=True)
else:
st.json(samples)
except Exception as e:
st.error(f"Error displaying samples: {e}")
st.json(samples) # Fallback to raw JSON display
else:
st.warning("Could not fetch dataset samples.")
# Footer
st.markdown("---")
st.markdown("Repository Explorer | Last updated: April 2025")
|