Initial prototype
Browse files
app.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import pandas as pd
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
from datasets import load_dataset
|
7 |
+
|
8 |
+
# Set page configuration
|
9 |
+
st.set_page_config(
|
10 |
+
page_title="Huggingface Repository Explorer",
|
11 |
+
page_icon="🤗",
|
12 |
+
layout="wide",
|
13 |
+
initial_sidebar_state="expanded"
|
14 |
+
)
|
15 |
+
|
16 |
+
# Title and description
|
17 |
+
st.title("🤗 Huggingface Repository Explorer")
|
18 |
+
st.markdown("""
|
19 |
+
This dashboard showcases our models and datasets on Huggingface.
|
20 |
+
Select a dataset to view sample data.
|
21 |
+
""")
|
22 |
+
|
23 |
+
# Access token will be set up via environment variable in the Huggingface Space
|
24 |
+
# This way it's not exposed in the code and users don't need to enter it
|
25 |
+
AUTH_TOKEN = os.environ.get("HF_TOKEN", "")
|
26 |
+
|
27 |
+
# HF API endpoints
|
28 |
+
HF_API_BASE = "https://huggingface.co/api"
|
29 |
+
|
30 |
+
# Function to fetch dataset samples using the pre-configured token
|
31 |
+
def fetch_dataset_samples(dataset_id, n=10):
|
32 |
+
try:
|
33 |
+
# Load the dataset in streaming mode
|
34 |
+
dataset = load_dataset(dataset_id,
|
35 |
+
split="train",
|
36 |
+
streaming=True,
|
37 |
+
token=AUTH_TOKEN)
|
38 |
+
|
39 |
+
# Get the first n examples
|
40 |
+
samples = []
|
41 |
+
for i, example in enumerate(dataset):
|
42 |
+
if i >= n:
|
43 |
+
break
|
44 |
+
samples.append(example)
|
45 |
+
|
46 |
+
return samples
|
47 |
+
except Exception as e:
|
48 |
+
st.error(f"Error loading dataset samples: {e}")
|
49 |
+
return None
|
50 |
+
|
51 |
+
# Hard-coded model list
|
52 |
+
model_data = {
|
53 |
+
"Model Name": [
|
54 |
+
"TitanCAProject/Qwen2.5-Coder-7B-Instruct_lora_r16a32-c_sharp",
|
55 |
+
"TitanCAProject/Qwen2.5-Coder-7B-Instruct_lora_r16a32-python",
|
56 |
+
"TitanCAProject/Qwen2.5-Coder-7B-Instruct_lora_r16a32-C",
|
57 |
+
"TitanCAProject/Qwen2.5-Coder-7B-Instruct_lora_r16a32-java",
|
58 |
+
"TitanCAProject/CodeBERT-javascript"
|
59 |
+
],
|
60 |
+
"Description": [
|
61 |
+
"Qwen2.5 model for the Csharp language",
|
62 |
+
"Qwen2.5 model for the Python language",
|
63 |
+
"Qwen2.5 model for the C language",
|
64 |
+
"Qwen2.5 model for the Jave language",
|
65 |
+
"CodeBERT model for the Javascript language"
|
66 |
+
],
|
67 |
+
"Size (GB)": [0.4, 0.5, 0.9, 1.3, 0.3],
|
68 |
+
"Last Updated": [
|
69 |
+
"2024-11-15",
|
70 |
+
"2024-10-30",
|
71 |
+
"2024-12-05",
|
72 |
+
"2024-11-20",
|
73 |
+
"2024-12-10"
|
74 |
+
]
|
75 |
+
}
|
76 |
+
|
77 |
+
# Convert to DataFrames
|
78 |
+
df_models = pd.DataFrame(model_data)
|
79 |
+
|
80 |
+
# Function to fetch dataset info including size and sample count
|
81 |
+
def fetch_dataset_info(dataset_id):
|
82 |
+
headers = {"Authorization": f"Bearer {AUTH_TOKEN}"}
|
83 |
+
size_url = f"https://datasets-server.huggingface.co/size?dataset={dataset_id}"
|
84 |
+
url = f"{HF_API_BASE}/datasets/{dataset_id}"
|
85 |
+
|
86 |
+
try:
|
87 |
+
response = requests.get(size_url, headers=headers)
|
88 |
+
if response.status_code != 200:
|
89 |
+
st.warning(f"Error fetching dataset size info: {response.status_code}")
|
90 |
+
return None
|
91 |
+
dataset_info = response.json()
|
92 |
+
|
93 |
+
# Get size information - need to calculate
|
94 |
+
size_bytes = dataset_info['size']['dataset'].get('num_bytes_original_files', 0)
|
95 |
+
# Convert to MB for display
|
96 |
+
size_mb = round(size_bytes / (1024 * 1024), 2) if size_bytes else None
|
97 |
+
|
98 |
+
# Get row count information
|
99 |
+
sample_count = dataset_info['size']['dataset'].get('num_rows', 0)
|
100 |
+
|
101 |
+
response = requests.get(url, headers=headers)
|
102 |
+
if response.status_code != 200:
|
103 |
+
st.warning(f"Error fetching dataset info: {response.status_code}")
|
104 |
+
return None
|
105 |
+
dataset_info = response.json()
|
106 |
+
|
107 |
+
result = {
|
108 |
+
'id': dataset_id,
|
109 |
+
'description': dataset_info.get('description', 'No description available'),
|
110 |
+
'size_mb': size_mb,
|
111 |
+
'sample_count': sample_count,
|
112 |
+
'last_modified': dataset_info.get('lastModified', 'Unknown')
|
113 |
+
}
|
114 |
+
return result
|
115 |
+
|
116 |
+
except Exception as e:
|
117 |
+
st.error(f"Error processing dataset info: {e}")
|
118 |
+
return None
|
119 |
+
|
120 |
+
# Main tabs
|
121 |
+
tab1, tab2 = st.tabs(["Models", "Datasets"])
|
122 |
+
|
123 |
+
# Models Tab
|
124 |
+
with tab1:
|
125 |
+
st.header("Models")
|
126 |
+
|
127 |
+
# Display models table
|
128 |
+
st.dataframe(df_models, use_container_width=True)
|
129 |
+
|
130 |
+
# Selected model details
|
131 |
+
st.subheader("Model Details")
|
132 |
+
selected_model = st.selectbox("Select a model for details", df_models["Model Name"], key="model_select")
|
133 |
+
|
134 |
+
if selected_model:
|
135 |
+
model_details = df_models[df_models["Model Name"] == selected_model].iloc[0]
|
136 |
+
|
137 |
+
st.markdown("### " + model_details["Model Name"])
|
138 |
+
st.markdown(f"**Description**: {model_details['Description']}")
|
139 |
+
st.markdown(f"**Size**: {model_details['Size (GB)']} GB")
|
140 |
+
st.markdown(f"**Last Updated**: {model_details['Last Updated']}")
|
141 |
+
|
142 |
+
|
143 |
+
with tab2:
|
144 |
+
st.header("Datasets")
|
145 |
+
|
146 |
+
# List of dataset IDs to display
|
147 |
+
dataset_ids = [
|
148 |
+
"YChang1112/test-dataset",
|
149 |
+
"Anthropic/EconomicIndex"
|
150 |
+
]
|
151 |
+
|
152 |
+
# Get actual dataset info from API
|
153 |
+
dataset_info_list = []
|
154 |
+
if AUTH_TOKEN:
|
155 |
+
with st.spinner("Loading dataset information..."):
|
156 |
+
for dataset_id in dataset_ids:
|
157 |
+
info = fetch_dataset_info(dataset_id)
|
158 |
+
if info:
|
159 |
+
dataset_info_list.append(info)
|
160 |
+
else:
|
161 |
+
st.warning("Authentication token not configured. Unable to fetch dataset information.")
|
162 |
+
|
163 |
+
# Create a DataFrame from the collected information
|
164 |
+
if dataset_info_list:
|
165 |
+
df_datasets = pd.DataFrame({
|
166 |
+
"Dataset Name": [info['id'] for info in dataset_info_list],
|
167 |
+
"Description": [info['description'] for info in dataset_info_list],
|
168 |
+
"Size (MB)": [info['size_mb'] for info in dataset_info_list],
|
169 |
+
"Samples": [info['sample_count'] for info in dataset_info_list],
|
170 |
+
"Last Modified": [info['last_modified'] for info in dataset_info_list]
|
171 |
+
})
|
172 |
+
|
173 |
+
# Display datasets table
|
174 |
+
st.dataframe(df_datasets, use_container_width=True)
|
175 |
+
else:
|
176 |
+
st.error("No dataset information available. Please check your dataset IDs and authentication token.")
|
177 |
+
|
178 |
+
|
179 |
+
# Dataset details with sample preview
|
180 |
+
st.subheader("Dataset Preview")
|
181 |
+
|
182 |
+
if dataset_info_list:
|
183 |
+
selected_dataset = st.selectbox("Select a dataset to preview",
|
184 |
+
[info['id'] for info in dataset_info_list],
|
185 |
+
key="dataset_select")
|
186 |
+
|
187 |
+
if selected_dataset:
|
188 |
+
# Find the dataset info
|
189 |
+
dataset_info = next((info for info in dataset_info_list if info['id'] == selected_dataset), None)
|
190 |
+
|
191 |
+
if dataset_info:
|
192 |
+
st.markdown(f"### {dataset_info['id']}")
|
193 |
+
st.markdown(f"**Description**: {dataset_info['description']}")
|
194 |
+
st.markdown(f"**Size**: {dataset_info['size_mb']} MB")
|
195 |
+
st.markdown(f"**Total Samples**: {dataset_info['sample_count']:,}")
|
196 |
+
st.markdown(f"**Last Modified**: {dataset_info['last_modified']}")
|
197 |
+
|
198 |
+
# Show dataset samples
|
199 |
+
st.markdown("### Sample Train Data")
|
200 |
+
|
201 |
+
with st.spinner("Fetching dataset samples..."):
|
202 |
+
samples = fetch_dataset_samples(selected_dataset)
|
203 |
+
|
204 |
+
if samples:
|
205 |
+
# Convert samples to DataFrame if possible
|
206 |
+
try:
|
207 |
+
# If it's a list of samples
|
208 |
+
if isinstance(samples, list) and len(samples) > 0:
|
209 |
+
# Try to normalize to handle nested structures
|
210 |
+
df_sample = pd.json_normalize(samples)
|
211 |
+
st.dataframe(df_sample, use_container_width=True)
|
212 |
+
# If it's a single sample object
|
213 |
+
elif isinstance(samples, dict):
|
214 |
+
df_sample = pd.DataFrame([samples])
|
215 |
+
st.dataframe(df_sample, use_container_width=True)
|
216 |
+
else:
|
217 |
+
st.json(samples)
|
218 |
+
except Exception as e:
|
219 |
+
st.error(f"Error displaying samples: {e}")
|
220 |
+
st.json(samples) # Fallback to raw JSON display
|
221 |
+
else:
|
222 |
+
st.warning("Could not fetch dataset samples.")
|
223 |
+
|
224 |
+
# Footer
|
225 |
+
st.markdown("---")
|
226 |
+
st.markdown("Repository Explorer | Last updated: April 2025")
|
227 |
+
|