File size: 46,433 Bytes
1f1df39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
import itertools
import logging

from collections import defaultdict, namedtuple
from itertools import chain
from typing import Any, Dict, List, Tuple

import numpy as np
import torch
import torch.nn as nn

from sklearn.metrics import classification_report, accuracy_score

from rationale_benchmark.metrics import (
    PositionScoredDocument,
    Rationale,
    partial_match_score,
    score_hard_rationale_predictions,
    score_soft_tokens
)

from rationale_benchmark.utils import Annotation
from rationale_benchmark.models.model_utils import PaddedSequence

SentenceEvidence = namedtuple('SentenceEvidence', 'kls ann_id query docid index sentence')

def token_annotations_to_evidence_classification(annotations: List[Annotation],
                                                 documents: Dict[str, List[List[Any]]],
                                                 class_interner: Dict[str, int],
                                                 ) -> List[SentenceEvidence]:
    ret = []
    for ann in annotations:
        docid_to_ev = defaultdict(list)
        for evidence in ann.all_evidences():
            docid_to_ev[evidence.docid].append(evidence)
        for docid, evidences in docid_to_ev.items():
            evidences = sorted(evidences, key=lambda ev: ev.start_token)
            text = []
            covered_tokens = set()
            doc = list(chain.from_iterable(documents[docid]))
            for evidence in evidences:
                assert evidence.start_token >= 0 and evidence.end_token > evidence.start_token
                assert evidence.start_token < len(doc) and evidence.end_token <= len(doc)
                text.extend(evidence.text)
                new_tokens = set(range(evidence.start_token, evidence.end_token))
                if len(new_tokens & covered_tokens) > 0:
                    raise ValueError("Have overlapping token ranges covered in the evidence spans and the implementer was lazy; deal with it")
                covered_tokens |= new_tokens
            assert len(text) > 0
            ret.append(SentenceEvidence(kls=class_interner[ann.classification],
                                        query=ann.query,
                                        ann_id=ann.annotation_id,
                                        docid=docid,
                                        index=-1,
                                        sentence=tuple(text)))
    return ret

def annotations_to_evidence_classification(annotations: List[Annotation],
                                           documents: Dict[str, List[List[Any]]],
                                           class_interner: Dict[str, int],
                                           include_all: bool
                                           ) -> List[SentenceEvidence]:
    """Converts Corpus-Level annotations to Sentence Level relevance judgments.

    As this module is about a pipelined approach for evidence identification,
    inputs to both an evidence identifier and evidence classifier need to be to
    be on a sentence level, this module converts data to be that form.

    The return type is of the form
        annotation id -> docid -> [sentence level annotations]
    """
    ret = []
    for ann in annotations:
        ann_id = ann.annotation_id
        docids = set(ev.docid for ev in chain.from_iterable(ann.evidences))
        annotations_for_doc = defaultdict(list)
        for d in docids:
            for index, sent in enumerate(documents[d]):
                annotations_for_doc[d].append(
                    SentenceEvidence(
                        kls=class_interner[ann.classification],
                        query=ann.query,
                        ann_id=ann.annotation_id,
                        docid=d,
                        index=index,
                        sentence=tuple(sent)))
        if include_all:
            ret.extend(chain.from_iterable(annotations_for_doc.values()))
        else:
            contributes = set()
            for ev in chain.from_iterable(ann.evidences):
                for index in range(ev.start_sentence, ev.end_sentence):
                    contributes.add(annotations_for_doc[ev.docid][index])
            ret.extend(contributes)
    assert len(ret) > 0
    return ret


def annotations_to_evidence_identification(annotations: List[Annotation],
                                           documents: Dict[str, List[List[Any]]]
                                           ) -> Dict[str, Dict[str, List[SentenceEvidence]]]:
    """Converts Corpus-Level annotations to Sentence Level relevance judgments.

    As this module is about a pipelined approach for evidence identification,
    inputs to both an evidence identifier and evidence classifier need to be to
    be on a sentence level, this module converts data to be that form.

    The return type is of the form
        annotation id -> docid -> [sentence level annotations]
    """
    ret = defaultdict(dict)  # annotation id -> docid -> sentences
    for ann in annotations:
        ann_id = ann.annotation_id
        for ev_group in ann.evidences:
            for ev in ev_group:
                if len(ev.text) == 0:
                    continue
                if ev.docid not in ret[ann_id]:
                    ret[ann.annotation_id][ev.docid] = []
                    # populate the document with "not evidence"; to be filled in later
                    for index, sent in enumerate(documents[ev.docid]):
                        ret[ann.annotation_id][ev.docid].append(SentenceEvidence(
                            kls=0,
                            query=ann.query,
                            ann_id=ann.annotation_id,
                            docid=ev.docid,
                            index=index,
                            sentence=sent))
                # define the evidence sections of the document
                for s in range(ev.start_sentence, ev.end_sentence):
                    ret[ann.annotation_id][ev.docid][s] = SentenceEvidence(
                        kls=1,
                        ann_id=ann.annotation_id,
                        query=ann.query,
                        docid=ev.docid,
                        index=ret[ann.annotation_id][ev.docid][s].index,
                        sentence=ret[ann.annotation_id][ev.docid][s].sentence)
    return ret


def annotations_to_evidence_token_identification(annotations: List[Annotation],
                                                 source_documents: Dict[str, List[List[str]]],
                                                 interned_documents: Dict[str, List[List[int]]],
                                                 token_mapping: Dict[str, List[List[Tuple[int, int]]]]
                                                 ) -> Dict[str, Dict[str, List[SentenceEvidence]]]:
    # TODO document
    # TODO should we simplify to use only source text?
    ret = defaultdict(lambda: defaultdict(list)) # annotation id -> docid -> sentences
    positive_tokens = 0
    negative_tokens = 0
    for ann in annotations:
        annid = ann.annotation_id
        docids = set(ev.docid for ev in chain.from_iterable(ann.evidences))
        sentence_offsets = defaultdict(list) # docid -> [(start, end)]
        classes = defaultdict(list) # docid -> [token is yea or nay]
        for docid in docids:
            start = 0
            assert len(source_documents[docid]) == len(interned_documents[docid])
            for whole_token_sent, wordpiece_sent in zip(source_documents[docid], interned_documents[docid]):
                classes[docid].extend([0 for _ in wordpiece_sent])
                end = start + len(wordpiece_sent)
                sentence_offsets[docid].append((start, end))
                start = end
        for ev in chain.from_iterable(ann.evidences):
            if len(ev.text) == 0:
                continue
            flat_token_map = list(chain.from_iterable(token_mapping[ev.docid]))
            if ev.start_token != -1:
                #start, end = token_mapping[ev.docid][ev.start_token][0], token_mapping[ev.docid][ev.end_token][1]
                start, end = flat_token_map[ev.start_token][0], flat_token_map[ev.end_token - 1][1]
            else:
                start = flat_token_map[sentence_offsets[ev.start_sentence][0]][0]
                end = flat_token_map[sentence_offsets[ev.end_sentence - 1][1]][1]
            for i in range(start, end):
                classes[ev.docid][i] = 1
        for docid, offsets in sentence_offsets.items():
            token_assignments = classes[docid]
            positive_tokens += sum(token_assignments)
            negative_tokens += len(token_assignments) - sum(token_assignments)
            for s, (start, end) in enumerate(offsets):
                sent = interned_documents[docid][s]
                ret[annid][docid].append(SentenceEvidence(kls=tuple(token_assignments[start:end]),
                                                          query=ann.query,
                                                          ann_id=ann.annotation_id,
                                                          docid=docid,
                                                          index=s,
                                                          sentence=sent))
    logging.info(f"Have {positive_tokens} positive wordpiece tokens, {negative_tokens} negative wordpiece tokens")
    return ret


def make_preds_batch(classifier: nn.Module,
                     batch_elements: List[SentenceEvidence],
                     device=None,
                     criterion: nn.Module = None,
                     tensorize_model_inputs: bool = True) -> Tuple[float, List[float], List[int], List[int]]:
    """Batch predictions

    Args:
        classifier: a module that looks like an AttentiveClassifier
        batch_elements: a list of elements to make predictions over. These must be SentenceEvidence objects.
        device: Optional; what compute device this should run on
        criterion: Optional; a loss function
        tensorize_model_inputs: should we convert our data to tensors before passing it to the model? Useful if we have a model that performs its own tokenization
    """
    # delete any "None" padding, if any (imposed by the use of the "grouper")
    batch_elements = filter(lambda x: x is not None, batch_elements)
    targets, queries, sentences = zip(*[(s.kls, s.query, s.sentence) for s in batch_elements])
    ids = [(s.ann_id, s.docid, s.index) for s in batch_elements]
    targets = torch.tensor(targets, dtype=torch.long, device=device)
    if tensorize_model_inputs:
        queries = [torch.tensor(q, dtype=torch.long) for q in queries]
        sentences = [torch.tensor(s, dtype=torch.long) for s in sentences]
    preds = classifier(queries, ids, sentences)
    targets = targets.to(device=preds.device)
    if criterion:
        loss = criterion(preds, targets)
    else:
        loss = None
    # .float() because pytorch 1.3 introduces a bug where argmax is unsupported for float16
    hard_preds = torch.argmax(preds.float(), dim=-1)
    return loss, preds, hard_preds, targets


def make_preds_epoch(classifier: nn.Module,
                     data: List[SentenceEvidence],
                     batch_size: int,
                     device=None,
                     criterion: nn.Module = None,
                     tensorize_model_inputs: bool = True):
    """Predictions for more than one batch.

    Args:
        classifier: a module that looks like an AttentiveClassifier
        data: a list of elements to make predictions over. These must be SentenceEvidence objects.
        batch_size: the biggest chunk we can fit in one batch.
        device: Optional; what compute device this should run on
        criterion: Optional; a loss function
        tensorize_model_inputs: should we convert our data to tensors before passing it to the model? Useful if we have a model that performs its own tokenization
    """
    epoch_loss = 0
    epoch_soft_pred = []
    epoch_hard_pred = []
    epoch_truth = []
    batches = _grouper(data, batch_size)
    classifier.eval()
    for batch in batches:
        loss, soft_preds, hard_preds, targets = make_preds_batch(classifier, batch, device, criterion=criterion,
                                                                 tensorize_model_inputs=tensorize_model_inputs)
        if loss is not None:
            epoch_loss += loss.sum().item()
        epoch_hard_pred.extend(hard_preds)
        epoch_soft_pred.extend(soft_preds.cpu())
        epoch_truth.extend(targets)
    epoch_loss /= len(data)
    epoch_hard_pred = [x.item() for x in epoch_hard_pred]
    epoch_truth = [x.item() for x in epoch_truth]
    return epoch_loss, epoch_soft_pred, epoch_hard_pred, epoch_truth


def make_token_preds_batch(classifier: nn.Module,
                           batch_elements: List[SentenceEvidence],
                           token_mapping: Dict[str, List[List[Tuple[int, int]]]],
                           device=None,
                           criterion: nn.Module = None,
                           tensorize_model_inputs: bool = True) -> Tuple[float, List[float], List[int], List[int]]:
    """Batch predictions

    Args:
        classifier: a module that looks like an AttentiveClassifier
        batch_elements: a list of elements to make predictions over. These must be SentenceEvidence objects.
        device: Optional; what compute device this should run on
        criterion: Optional; a loss function
        tensorize_model_inputs: should we convert our data to tensors before passing it to the model? Useful if we have a model that performs its own tokenization
    """
    # delete any "None" padding, if any (imposed by the use of the "grouper")
    batch_elements = filter(lambda x: x is not None, batch_elements)
    targets, queries, sentences = zip(*[(s.kls, s.query, s.sentence) for s in batch_elements])
    ids = [(s.ann_id, s.docid, s.index) for s in batch_elements]
    targets = PaddedSequence.autopad([torch.tensor(t, dtype=torch.long, device=device) for t in targets], batch_first=True, device=device)
    aggregate_spans = [token_mapping[s.docid][s.index] for s in batch_elements]
    if tensorize_model_inputs:
        queries = [torch.tensor(q, dtype=torch.long) for q in queries]
        sentences = [torch.tensor(s, dtype=torch.long) for s in sentences]
    preds = classifier(queries, ids, sentences, aggregate_spans)
    targets = targets.to(device=preds.device)
    mask = targets.mask(on=1, off=0, device=preds.device, dtype=torch.float)
    if criterion:
        loss = criterion(preds, (targets.data.to(device=preds.device) * mask).squeeze()).sum()
    else:
        loss = None
    hard_preds = [torch.round(x).to(dtype=torch.int).cpu() for x in targets.unpad(preds)]
    targets = [[y.item() for y in x] for x in targets.unpad(targets.data.cpu())]
    return loss, preds, hard_preds, targets #targets.unpad(targets.data.cpu())


# TODO fix the arguments
def make_token_preds_epoch(classifier: nn.Module,
                           data: List[SentenceEvidence],
                           token_mapping: Dict[str, List[List[Tuple[int, int]]]],
                           batch_size: int,
                           device=None,
                           criterion: nn.Module = None,
                           tensorize_model_inputs: bool = True):
    """Predictions for more than one batch.

    Args:
        classifier: a module that looks like an AttentiveClassifier
        data: a list of elements to make predictions over. These must be SentenceEvidence objects.
        batch_size: the biggest chunk we can fit in one batch.
        device: Optional; what compute device this should run on
        criterion: Optional; a loss function
        tensorize_model_inputs: should we convert our data to tensors before passing it to the model? Useful if we have a model that performs its own tokenization
    """
    epoch_loss = 0
    epoch_soft_pred = []
    epoch_hard_pred = []
    epoch_truth = []
    batches = _grouper(data, batch_size)
    classifier.eval()
    for batch in batches:
        loss, soft_preds, hard_preds, targets = make_token_preds_batch(classifier,
                                                                       batch,
                                                                       token_mapping,
                                                                       device,
                                                                       criterion=criterion,
                                                                       tensorize_model_inputs=tensorize_model_inputs)
        if loss is not None:
            epoch_loss += loss.sum().item()
        epoch_hard_pred.extend(hard_preds)
        epoch_soft_pred.extend(soft_preds.cpu().tolist())
        epoch_truth.extend(targets)
    epoch_loss /= len(data)
    return epoch_loss, epoch_soft_pred, epoch_hard_pred, epoch_truth


# copied from https://docs.python.org/3/library/itertools.html#itertools-recipes
def _grouper(iterable, n, fillvalue=None):
    "Collect data into fixed-length chunks or blocks"
    # grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx"
    args = [iter(iterable)] * n
    return itertools.zip_longest(*args, fillvalue=fillvalue)


def score_rationales(truth: List[Annotation],
                     documents: Dict[str, List[List[int]]],
                     input_data: List[SentenceEvidence],
                     scores: List[float]
                     ) -> dict:
    results = {}
    doc_to_sent_scores = dict()  # (annid, docid) -> [sentence scores]
    for sent, score in zip(input_data, scores):
        k = (sent.ann_id, sent.docid)
        if k not in doc_to_sent_scores:
            doc_to_sent_scores[k] = [0.0 for _ in range(len(documents[sent.docid]))]
        if not isinstance(score[1], float):
            score[1] = score[1].item()
        doc_to_sent_scores[(sent.ann_id, sent.docid)][sent.index] = score[1]
    # hard rationale scoring
    best_sentence = {k: np.argmax(np.array(v)) for k, v in doc_to_sent_scores.items()}
    predicted_rationales = []
    for (ann_id, docid), sent_idx in best_sentence.items():
        start_token = sum(len(s) for s in documents[docid][:sent_idx])
        end_token = start_token + len(documents[docid][sent_idx])
        predicted_rationales.append(Rationale(ann_id, docid, start_token, end_token))
    true_rationales = list(chain.from_iterable(Rationale.from_annotation(rat) for rat in truth))

    results['hard_rationale_scores'] = score_hard_rationale_predictions(true_rationales, predicted_rationales)
    results['hard_rationale_partial_match_scores'] = partial_match_score(true_rationales, predicted_rationales, [0.5])

    # soft rationale scoring
    instance_format = []
    for (ann_id, docid), sentences in doc_to_sent_scores.items():
        soft_token_predictions = []
        for sent_score, sent_text in zip(sentences, documents[docid]):
            soft_token_predictions.extend(sent_score for _ in range(len(sent_text)))
        instance_format.append({
            'annotation_id': ann_id,
            'rationales': [{
                'docid': docid,
                'soft_rationale_predictions': soft_token_predictions,
                'soft_sentence_predictions': sentences,
            }],
        })
    flattened_documents = {k: list(chain.from_iterable(v)) for k, v in documents.items()}
    token_scoring_format = PositionScoredDocument.from_results(instance_format, truth, flattened_documents,
                                                               use_tokens=True)
    results['soft_token_scores'] = score_soft_tokens(token_scoring_format)
    sentence_scoring_format = PositionScoredDocument.from_results(instance_format, truth, documents, use_tokens=False)
    results['soft_sentence_scores'] = score_soft_tokens(sentence_scoring_format)
    return results


def decode(evidence_identifier: nn.Module,
           evidence_classifier: nn.Module,
           train: List[Annotation],
           val: List[Annotation],
           test: List[Annotation],
           docs: Dict[str, List[List[int]]],
           class_interner: Dict[str, int],
           batch_size: int,
           tensorize_model_inputs: bool,
           decoding_docs: Dict[str, List[Any]] = None) -> dict:
    """Identifies and then classifies evidence

    Args:
        evidence_identifier: a module for identifying evidence statements
        evidence_classifier: a module for making a classification based on evidence statements
        train: A List of interned Annotations
        val: A List of interned Annotations
        test: A List of interned Annotations
        docs: A Dict of Documents, which are interned sentences.
        class_interner: Converts an Annotation's final class into ints
        batch_size: how big should our batches be?
        tensorize_model_inputs: should we convert our data to tensors before passing it to the model? Useful if we have a model that performs its own tokenization
    """
    device = None
    class_labels = [k for k, v in sorted(class_interner.items(), key=lambda x: x[1])]
    if decoding_docs is None:
        decoding_docs = docs

    def prep(data: List[Annotation]) -> List[Tuple[SentenceEvidence, SentenceEvidence]]:
        """Prepares data for evidence identification and classification.

        Creates paired evaluation data, wherein each (annotation, docid, sentence, kls)
        tuplet appears first as the kls determining if the sentence is evidence, and
        secondarily what the overall classification for the (annotation/docid) pair is.
        This allows selection based on model scores of the evidence_identifier for
        input to the evidence_classifier.
        """
        identification_data = annotations_to_evidence_identification(data, docs)
        classification_data = annotations_to_evidence_classification(data, docs, class_interner, include_all=True)
        ann_doc_sents = defaultdict(lambda: defaultdict(dict))  # ann id -> docid -> sent idx -> sent data
        ret = []
        for sent_ev in classification_data:
            id_data = identification_data[sent_ev.ann_id][sent_ev.docid][sent_ev.index]
            ret.append((id_data, sent_ev))
            assert id_data.ann_id == sent_ev.ann_id
            assert id_data.docid == sent_ev.docid
            assert id_data.index == sent_ev.index
        assert len(ret) == len(classification_data)
        return ret

    def decode_batch(data: List[Tuple[SentenceEvidence, SentenceEvidence]], name: str, score: bool = False,
                     annotations: List[Annotation] = None) -> dict:
        """Identifies evidence statements and then makes classifications based on it.

        Args:
            data: a paired list of SentenceEvidences, differing only in the kls field.
                  The first corresponds to whether or not something is evidence, and the second corresponds to an evidence class
            name: a name for a results dict
        """

        num_uniques = len(set((x.ann_id, x.docid) for x, _ in data))
        logging.info(f'Decoding dataset {name} with {len(data)} sentences, {num_uniques} annotations')
        identifier_data, classifier_data = zip(*data)
        results = dict()
        IdentificationClassificationResult = namedtuple('IdentificationClassificationResult',
                                                        'identification_data classification_data soft_identification hard_identification soft_classification hard_classification')
        with torch.no_grad():
            # make predictions for the evidence_identifier
            evidence_identifier.eval()
            evidence_classifier.eval()

            _, soft_identification_preds, hard_identification_preds, _ = make_preds_epoch(evidence_identifier,
                                                                                          identifier_data, batch_size,
                                                                                          device,
                                                                                          tensorize_model_inputs=tensorize_model_inputs)
            assert len(soft_identification_preds) == len(data)
            identification_results = defaultdict(list)
            for id_data, cls_data, soft_id_pred, hard_id_pred in zip(identifier_data, classifier_data,
                                                                     soft_identification_preds,
                                                                     hard_identification_preds):
                res = IdentificationClassificationResult(identification_data=id_data,
                                                         classification_data=cls_data,
                                                         # 1 is p(evidence|sent,query)
                                                         soft_identification=soft_id_pred[1].float().item(),
                                                         hard_identification=hard_id_pred,
                                                         soft_classification=None,
                                                         hard_classification=False)
                identification_results[(id_data.ann_id, id_data.docid)].append(res)

            best_identification_results = {key: max(value, key=lambda x: x.soft_identification) for key, value in
                                           identification_results.items()}
            logging.info(
                f'Selected the best sentence for {len(identification_results)} examples from a total of {len(soft_identification_preds)} sentences')
            ids, classification_data = zip(
                *[(k, v.classification_data) for k, v in best_identification_results.items()])
            _, soft_classification_preds, hard_classification_preds, classification_truth = make_preds_epoch(
                evidence_classifier, classification_data, batch_size, device,
                tensorize_model_inputs=tensorize_model_inputs)
            classification_results = dict()
            for eyeD, soft_class, hard_class in zip(ids, soft_classification_preds, hard_classification_preds):
                input_id_result = best_identification_results[eyeD]
                res = IdentificationClassificationResult(identification_data=input_id_result.identification_data,
                                                         classification_data=input_id_result.classification_data,
                                                         soft_identification=input_id_result.soft_identification,
                                                         hard_identification=input_id_result.hard_identification,
                                                         soft_classification=soft_class,
                                                         hard_classification=hard_class)
                classification_results[eyeD] = res

            if score:
                truth = []
                pred = []
                for res in classification_results.values():
                    truth.append(res.classification_data.kls)
                    pred.append(res.hard_classification)
                # results[f'{name}_f1'] = classification_report(classification_truth, pred, target_names=class_labels, output_dict=True)
                results[f'{name}_f1'] = classification_report(classification_truth, hard_classification_preds,
                                                              target_names=class_labels, output_dict=True)
                results[f'{name}_acc'] = accuracy_score(classification_truth, hard_classification_preds)
                results[f'{name}_rationale'] = score_rationales(annotations, decoding_docs, identifier_data,
                                                                soft_identification_preds)

            # turn the above results into a format suitable for scoring via the rationale scorer
            # n.b. the sentence-level evidence predictions (hard and soft) are
            # broadcast to the token level for scoring. The comprehensiveness class
            # score is also a lie since the pipeline model above is faithful by
            # design.
            decoded = dict()
            decoded_scores = defaultdict(list)
            for (ann_id, docid), pred in classification_results.items():
                sentence_prediction_scores = [x.soft_identification for x in identification_results[(ann_id, docid)]]
                sentence_start_token = sum(len(s) for s in decoding_docs[docid][:pred.identification_data.index])
                sentence_end_token = sentence_start_token + len(decoding_docs[docid][pred.classification_data.index])
                hard_rationale_predictions = [{'start_token': sentence_start_token, 'end_token': sentence_end_token}]
                soft_rationale_predictions = []
                for sent_result in sorted(identification_results[(ann_id, docid)],
                                          key=lambda x: x.identification_data.index):
                    soft_rationale_predictions.extend(sent_result.soft_identification for _ in range(len(
                        decoding_docs[sent_result.identification_data.docid][sent_result.identification_data.index])))
                if ann_id not in decoded:
                    decoded[ann_id] = {
                        "annotation_id": ann_id,
                        "rationales": [],
                        "classification": class_labels[pred.hard_classification],
                        "classification_scores": {class_labels[i]: s.item() for i, s in
                                                  enumerate(pred.soft_classification)},
                        # TODO this should turn into the data distribution for the predicted class
                        # "comprehensiveness_classification_scores": 0.0,
                        "truth": pred.classification_data.kls,
                    }
                decoded[ann_id]['rationales'].append({
                    "docid": docid,
                    "hard_rationale_predictions": hard_rationale_predictions,
                    "soft_rationale_predictions": soft_rationale_predictions,
                    "soft_sentence_predictions": sentence_prediction_scores,
                })
                decoded_scores[ann_id].append(pred.soft_classification)

            # in practice, this is always a single element operation:
            # in evidence inference (prompt is really a prompt + document), fever (we split documents into two classifications), movies (you only have one opinion about a movie), or boolQ (single document prompts)
            # this exists to support weird models we *might* implement for cose/esnli
            for ann_id, scores_list in decoded_scores.items():
                scores = torch.stack(scores_list)
                score_avg = torch.mean(scores, dim=0)
                # .float() because pytorch 1.3 introduces a bug where argmax is unsupported for float16
                hard_pred = torch.argmax(score_avg.float()).item()
                decoded[ann_id]['classification'] = class_labels[hard_pred]
                decoded[ann_id]['classification_scores'] = {class_labels[i]: s.item() for i, s in enumerate(score_avg)}
            return results, list(decoded.values())

    test_results, test_decoded = decode_batch(prep(test), 'test', score=False)
    val_results, val_decoded = dict(), []
    train_results, train_decoded = dict(), []
    #val_results, val_decoded = decode_batch(prep(val), 'val', score=True, annotations=val)
    #train_results, train_decoded = decode_batch(prep(train), 'train', score=True, annotations=train)
    return dict(**train_results, **val_results, **test_results), train_decoded, val_decoded, test_decoded

def decode_evidence_tokens_and_classify(evidence_token_identifier: nn.Module,
                                        evidence_classifier: nn.Module,
                                        train: List[Annotation],
                                        val: List[Annotation],
                                        test: List[Annotation],
                                        docs: Dict[str, List[List[int]]],
                                        source_documents: Dict[str, List[List[str]]],
                                        token_mapping: Dict[str, List[List[Tuple[int, int]]]],
                                        class_interner: Dict[str, int],
                                        batch_size: int,
                                        decoding_docs: Dict[str, List[Any]],
                                        use_cose_hack: bool=False) -> dict:
    """Identifies and then classifies evidence

    Args:
        evidence_token_identifier: a module for identifying evidence statements
        evidence_classifier: a module for making a classification based on evidence statements
        train: A List of interned Annotations
        val: A List of interned Annotations
        test: A List of interned Annotations
        docs: A Dict of Documents, which are interned sentences.
        class_interner: Converts an Annotation's final class into ints
        batch_size: how big should our batches be?
    """
    device = None
    class_labels = [k for k, v in sorted(class_interner.items(), key=lambda x: x[1])]
    if decoding_docs is None:
        decoding_docs = docs

    def prep(data: List[Annotation]) -> List[Tuple[SentenceEvidence, SentenceEvidence]]:
        """Prepares data for evidence identification and classification.

        Creates paired evaluation data, wherein each (annotation, docid, sentence, kls)
        tuplet appears first as the kls determining if the sentence is evidence, and
        secondarily what the overall classification for the (annotation/docid) pair is.
        This allows selection based on model scores of the evidence_token_identifier for
        input to the evidence_classifier.
        """
        #identification_data = annotations_to_evidence_identification(data, docs)
        classification_data = token_annotations_to_evidence_classification(data, docs, class_interner)
        # annotation id -> docid -> [SentenceEvidence])
        identification_data = annotations_to_evidence_token_identification(data,
                                                                           source_documents=decoding_docs,
                                                                           interned_documents=docs,
                                                                           token_mapping=token_mapping)
        ann_doc_sents = defaultdict(lambda: defaultdict(dict))  # ann id -> docid -> sent idx -> sent data
        ret = []
        for sent_ev in classification_data:
            id_data = identification_data[sent_ev.ann_id][sent_ev.docid][sent_ev.index]
            ret.append((id_data, sent_ev))
            assert id_data.ann_id == sent_ev.ann_id
            assert id_data.docid == sent_ev.docid
            #assert id_data.index == sent_ev.index
        assert len(ret) == len(classification_data)
        return ret

    def decode_batch(data: List[Tuple[SentenceEvidence, SentenceEvidence]], name: str, score: bool = False,
                     annotations: List[Annotation] = None, class_labels: dict=class_labels) -> dict:
        """Identifies evidence statements and then makes classifications based on it.

        Args:
            data: a paired list of SentenceEvidences, differing only in the kls field.
                  The first corresponds to whether or not something is evidence, and the second corresponds to an evidence class
            name: a name for a results dict
        """

        num_uniques = len(set((x.ann_id, x.docid) for x, _ in data))
        logging.info(f'Decoding dataset {name} with {len(data)} sentences, {num_uniques} annotations')
        identifier_data, classifier_data = zip(*data)
        results = dict()
        with torch.no_grad():
            # make predictions for the evidence_token_identifier
            evidence_token_identifier.eval()
            evidence_classifier.eval()

            _, soft_identification_preds, hard_identification_preds, id_preds_truth = make_token_preds_epoch(evidence_token_identifier,
                                                                                                             identifier_data,
                                                                                                             token_mapping,
                                                                                                             batch_size,
                                                                                                             device,
                                                                                                             tensorize_model_inputs=True)
            assert len(soft_identification_preds) == len(data)
            evidence_only_cls = []
            for id_data, cls_data, soft_id_pred, hard_id_pred in zip(identifier_data,
                                                                     classifier_data,
                                                                     soft_identification_preds,
                                                                     hard_identification_preds):
                assert cls_data.ann_id == id_data.ann_id
                sent = []
                for (start, end) in token_mapping[cls_data.docid][0]:
                    if bool(hard_id_pred[start]):
                        sent.extend(id_data.sentence[start:end])
                #assert len(sent) > 0
                new_cls_data = SentenceEvidence(cls_data.kls,
                                                cls_data.ann_id,
                                                cls_data.query,
                                                cls_data.docid,
                                                cls_data.index,
                                                tuple(sent))
                evidence_only_cls.append(new_cls_data)
            _, soft_classification_preds, hard_classification_preds, classification_truth = make_preds_epoch(
                evidence_classifier, evidence_only_cls, batch_size, device,
                tensorize_model_inputs=True)

            if use_cose_hack:
                logging.info('Reformatting identification and classification results to fit COS-E')
                grouping = 5
                new_soft_identification_preds = []
                new_hard_identification_preds = []
                new_id_preds_truth = []
                new_soft_classification_preds = []
                new_hard_classification_preds = []
                new_classification_truth = []
                new_identifier_data = []
                class_labels = []

                # TODO fix the labels for COS-E
                for i in range(0, len(soft_identification_preds), grouping):
                    cls_scores = torch.stack(soft_classification_preds[i:i + grouping])
                    cls_scores = nn.functional.softmax(cls_scores, dim=-1)
                    cls_scores = cls_scores[:,1]
                    choice = torch.argmax(cls_scores)
                    cls_labels = [x.ann_id.split('_')[-1] for x in evidence_only_cls[i:i + grouping]]
                    class_labels = cls_labels  # we need to update the class labels because of the terrible hackery used to train this
                    cls_truths = [x.kls for x in evidence_only_cls[i:i + grouping]]
                    #cls_choice = evidence_only_cls[i + choice].ann_id.split('_')[-1]
                    cls_truth = np.argmax(cls_truths)
                    new_soft_identification_preds.append(soft_identification_preds[i + choice])
                    new_hard_identification_preds.append(hard_identification_preds[i + choice])
                    new_id_preds_truth.append(id_preds_truth[i + choice])
                    new_soft_classification_preds.append(soft_classification_preds[i + choice])
                    new_hard_classification_preds.append(choice)
                    new_identifier_data.append(identifier_data[i + choice])
                    #new_hard_classification_preds.append(hard_classification_preds[i + choice])
                    #new_classification_truth.append(classification_truth[i + choice])
                    new_classification_truth.append(cls_truth)

                soft_identification_preds = new_soft_identification_preds
                hard_identification_preds = new_hard_identification_preds
                id_preds_truth = new_id_preds_truth
                soft_classification_preds = new_soft_classification_preds
                hard_classification_preds = new_hard_classification_preds
                classification_truth = new_classification_truth
                identifier_data = new_identifier_data
            if score:
                results[f'{name}_f1'] = classification_report(classification_truth, hard_classification_preds,
                                                              target_names=class_labels, output_dict=True)
                results[f'{name}_acc'] = accuracy_score(classification_truth, hard_classification_preds)
                results[f'{name}_token_pred_acc'] = accuracy_score(list(chain.from_iterable(id_preds_truth)),
                                                                   list(chain.from_iterable(hard_identification_preds)))
                results[f'{name}_token_pred_f1'] = classification_report(list(chain.from_iterable(id_preds_truth)),
                                                                         list(chain.from_iterable(hard_identification_preds)),
                                                                         output_dict=True)
                # TODO for token level stuff!
                soft_id_scores = [[1-x, x] for x in chain.from_iterable(soft_identification_preds)]
                results[f'{name}_rationale'] = score_rationales(annotations,
                                                                decoding_docs,
                                                                identifier_data,
                                                                soft_id_scores)
                logging.info(f'Results: {results}')

            # turn the above results into a format suitable for scoring via the rationale scorer
            # n.b. the sentence-level evidence predictions (hard and soft) are
            # broadcast to the token level for scoring. The comprehensiveness class
            # score is also a lie since the pipeline model above is faithful by
            # design.
            decoded = dict()
            scores = []
            assert len(identifier_data) == len(soft_identification_preds)
            for id_data, soft_id_pred, hard_id_pred, soft_cls_preds, hard_cls_pred in zip(identifier_data,
                                                                                          soft_identification_preds,
                                                                                          hard_identification_preds,
                                                                                          soft_classification_preds,
                                                                                          hard_classification_preds):
                docid = id_data.docid
                if use_cose_hack:
                    docid = '_'.join(docid.split('_')[0:-1])
                assert len(docid) > 0
                rationales = {
                    "docid": docid,
                    "hard_rationale_predictions": [],
                    # token level classifications, a value must be provided per-token
                    # in an ideal world, these correspond to the hard-decoding above.
                    "soft_rationale_predictions": [],
                    # sentence level classifications, a value must be provided for every
                    # sentence in each document, or not at all
                    "soft_sentence_predictions": [1.0]
                }
                last = -1
                start_span = -1
                for pos, (start, _) in enumerate(token_mapping[id_data.docid][0]):
                    rationales['soft_rationale_predictions'].append(soft_id_pred[start])
                    if bool(hard_id_pred[start]):
                        if start_span == -1:
                            start_span = pos
                        last = pos
                    else:
                        if start_span != -1:
                            rationales['hard_rationale_predictions'].append({
                                "start_token": start_span,
                                "end_token": last + 1,
                            })
                        last = -1
                        start_span = -1
                if start_span != -1:
                    rationales['hard_rationale_predictions'].append({
                        "start_token": start_span,
                        "end_token": last + 1,
                    })

                ann_id = id_data.ann_id
                if use_cose_hack:
                    ann_id = '_'.join(ann_id.split('_')[0:-1])
                soft_cls_preds = nn.functional.softmax(soft_cls_preds)
                decoded[id_data.ann_id] = {
                    "annotation_id": ann_id,
                    "rationales": [rationales],
                    "classification": class_labels[hard_cls_pred],
                    "classification_scores": {class_labels[i]:score.item() for i,score in enumerate(soft_cls_preds)}
                }
            return results, list(decoded.values())

    #test_results, test_decoded = dict(), []
    #val_results, val_decoded = dict(), []
    train_results, train_decoded = dict(), []
    val_results, val_decoded = decode_batch(prep(val), 'val', score=True, annotations=val, class_labels=class_labels)
    test_results, test_decoded = decode_batch(prep(test), 'test', score=False, class_labels=class_labels)
    #train_results, train_decoded = decode_batch(prep(train), 'train', score=True, annotations=train, class_labels=class_labels)
    return dict(**train_results, **val_results, **test_results), train_decoded, val_decoded, test_decoded