Spaces:
Runtime error
Runtime error
Upload 69 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- BERT/.ipynb_checkpoints/Untitled-checkpoint.ipynb +6 -0
- BERT/.ipynb_checkpoints/Untitled1-checkpoint.ipynb +6 -0
- BERT/BERT-EXPL.py +66 -0
- BERT/BERT/config.json +20 -0
- BERT/BERT/eval_results_sst-2.txt +3 -0
- BERT/BERT/flax_model.msgpack +3 -0
- BERT/BERT/gitattributes +9 -0
- BERT/BERT/pytorch_model.bin +3 -0
- BERT/BERT/special_tokens_map.json +1 -0
- BERT/BERT/tokenizer_config.json +1 -0
- BERT/BERT/training_args.bin +3 -0
- BERT/BERT/vocab.txt +0 -0
- BERT/BERT_explainability/modules/BERT/BERT.py +671 -0
- BERT/BERT_explainability/modules/BERT/BERT_cls_lrp.py +202 -0
- BERT/BERT_explainability/modules/BERT/BERT_orig_lrp.py +671 -0
- BERT/BERT_explainability/modules/BERT/BertForSequenceClassification.py +215 -0
- BERT/BERT_explainability/modules/BERT/ExplanationGenerator.py +156 -0
- BERT/BERT_explainability/modules/BERT/__pycache__/BERT.cpython-38.pyc +0 -0
- BERT/BERT_explainability/modules/BERT/__pycache__/BertForSequenceClassification.cpython-38.pyc +0 -0
- BERT/BERT_explainability/modules/BERT/__pycache__/ExplanationGenerator.cpython-311.pyc +0 -0
- BERT/BERT_explainability/modules/BERT/__pycache__/ExplanationGenerator.cpython-38.pyc +0 -0
- BERT/BERT_explainability/modules/__init__.py +0 -0
- BERT/BERT_explainability/modules/__pycache__/__init__.cpython-311.pyc +0 -0
- BERT/BERT_explainability/modules/__pycache__/__init__.cpython-38.pyc +0 -0
- BERT/BERT_explainability/modules/__pycache__/layers_ours.cpython-38.pyc +0 -0
- BERT/BERT_explainability/modules/layers_lrp.py +268 -0
- BERT/BERT_explainability/modules/layers_ours.py +292 -0
- BERT/BERT_params/boolq.json +26 -0
- BERT/BERT_params/boolq_baas.json +26 -0
- BERT/BERT_params/boolq_bert.json +32 -0
- BERT/BERT_params/boolq_soft.json +21 -0
- BERT/BERT_params/cose_bert.json +30 -0
- BERT/BERT_params/cose_multiclass.json +35 -0
- BERT/BERT_params/esnli_bert.json +28 -0
- BERT/BERT_params/evidence_inference.json +26 -0
- BERT/BERT_params/evidence_inference_bert.json +33 -0
- BERT/BERT_params/evidence_inference_soft.json +22 -0
- BERT/BERT_params/fever.json +26 -0
- BERT/BERT_params/fever_baas.json +25 -0
- BERT/BERT_params/fever_bert.json +32 -0
- BERT/BERT_params/fever_soft.json +21 -0
- BERT/BERT_params/movies.json +26 -0
- BERT/BERT_params/movies_baas.json +26 -0
- BERT/BERT_params/movies_bert.json +32 -0
- BERT/BERT_params/movies_soft.json +21 -0
- BERT/BERT_params/multirc.json +26 -0
- BERT/BERT_params/multirc_baas.json +26 -0
- BERT/BERT_params/multirc_bert.json +32 -0
- BERT/BERT_params/multirc_soft.json +21 -0
- BERT/BERT_rationale_benchmark/__init__.py +0 -0
BERT/.ipynb_checkpoints/Untitled-checkpoint.ipynb
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [],
|
3 |
+
"metadata": {},
|
4 |
+
"nbformat": 4,
|
5 |
+
"nbformat_minor": 5
|
6 |
+
}
|
BERT/.ipynb_checkpoints/Untitled1-checkpoint.ipynb
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [],
|
3 |
+
"metadata": {},
|
4 |
+
"nbformat": 4,
|
5 |
+
"nbformat_minor": 5
|
6 |
+
}
|
BERT/BERT-EXPL.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from transformers import BertTokenizer
|
3 |
+
from BERT_explainability.modules.BERT.ExplanationGenerator import Generator
|
4 |
+
from BERT_explainability.modules.BERT.BertForSequenceClassification import BertForSequenceClassification
|
5 |
+
from transformers import BertTokenizer
|
6 |
+
from BERT_explainability.modules.BERT.ExplanationGenerator import Generator
|
7 |
+
from transformers import AutoTokenizer
|
8 |
+
from captum.attr import visualization
|
9 |
+
import spacy
|
10 |
+
import torch
|
11 |
+
from IPython.display import Image, HTML, display
|
12 |
+
|
13 |
+
from sequenceoutput.modeling_output import SequenceClassifierOutput
|
14 |
+
|
15 |
+
model = BertForSequenceClassification.from_pretrained("./BERT").to("cuda")
|
16 |
+
model.eval()
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("./BERT")
|
18 |
+
# initialize the explanations generator
|
19 |
+
explanations = Generator(model)
|
20 |
+
|
21 |
+
classifications = ["NEGATIVE", "POSITIVE"]
|
22 |
+
|
23 |
+
# encode a sentence
|
24 |
+
text_batch = ["I hate that I love you."]
|
25 |
+
encoding = tokenizer(text_batch, return_tensors='pt')
|
26 |
+
input_ids = encoding['input_ids'].to("cuda")
|
27 |
+
attention_mask = encoding['attention_mask'].to("cuda")
|
28 |
+
|
29 |
+
# true class is positive - 1
|
30 |
+
true_class = 1
|
31 |
+
|
32 |
+
# generate an explanation for the input
|
33 |
+
target_class = 0
|
34 |
+
expl = \
|
35 |
+
explanations.generate_LRP(input_ids=input_ids, attention_mask=attention_mask, start_layer=11, index=target_class)[0]
|
36 |
+
# normalize scores
|
37 |
+
expl = (expl - expl.min()) / (expl.max() - expl.min())
|
38 |
+
|
39 |
+
# get the model classification
|
40 |
+
output = torch.nn.functional.softmax(model(input_ids=input_ids, attention_mask=attention_mask)[0], dim=-1)
|
41 |
+
classification = output.argmax(dim=-1).item()
|
42 |
+
# get class name
|
43 |
+
class_name = classifications[target_class]
|
44 |
+
# if the classification is negative, higher explanation scores are more negative
|
45 |
+
# flip for visualization
|
46 |
+
if class_name == "NEGATIVE":
|
47 |
+
expl *= (-1)
|
48 |
+
token_importance = {}
|
49 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids.flatten())
|
50 |
+
for i in range(len(tokens)):
|
51 |
+
token_importance[tokens[i]] = expl[i].item()
|
52 |
+
vis_data_records = [visualization.VisualizationDataRecord(
|
53 |
+
expl,
|
54 |
+
output[0][classification],
|
55 |
+
classification,
|
56 |
+
true_class,
|
57 |
+
true_class,
|
58 |
+
1,
|
59 |
+
tokens,
|
60 |
+
1)]
|
61 |
+
|
62 |
+
html1 = visualization.visualize_text(vis_data_records)
|
63 |
+
# print(token_importance, html1)
|
64 |
+
# with open('bert-xai.html', 'w+') as f:
|
65 |
+
# f.write(str(html1))
|
66 |
+
# return token_importance, html1
|
BERT/BERT/config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForSequenceClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"finetuning_task": "sst-2",
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 3072,
|
12 |
+
"layer_norm_eps": 1e-12,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"model_type": "bert",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 12,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"type_vocab_size": 2,
|
19 |
+
"vocab_size": 30522
|
20 |
+
}
|
BERT/BERT/eval_results_sst-2.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
eval_loss = 0.2785584788237299
|
2 |
+
eval_acc = 0.9243119266055045
|
3 |
+
epoch = 3.0
|
BERT/BERT/flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57ebdee44ea63b8f3a2a53011dabbd37a7bec8da5d38834beb9751075bb8b821
|
3 |
+
size 437942328
|
BERT/BERT/gitattributes
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
BERT/BERT/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5f7d1b5618ba58907379af830ee895c8800e3b381286b13d07d90aaf204dc40
|
3 |
+
size 437985387
|
BERT/BERT/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
BERT/BERT/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "model_max_length": 512}
|
BERT/BERT/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da4b38103a827982f36030842c04dcc7f34bb64cb2f56fa45cc69860836ca5d1
|
3 |
+
size 1053
|
BERT/BERT/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
BERT/BERT_explainability/modules/BERT/BERT.py
ADDED
@@ -0,0 +1,671 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import absolute_import
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import math
|
7 |
+
from transformers import BertConfig
|
8 |
+
from transformers.modeling_outputs import BaseModelOutputWithPooling, BaseModelOutput
|
9 |
+
from BERT_explainability.modules.layers_ours import *
|
10 |
+
from transformers import (
|
11 |
+
BertPreTrainedModel,
|
12 |
+
PreTrainedModel,
|
13 |
+
)
|
14 |
+
|
15 |
+
ACT2FN = {
|
16 |
+
"relu": ReLU,
|
17 |
+
"tanh": Tanh,
|
18 |
+
"gelu": GELU,
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
def get_activation(activation_string):
|
23 |
+
if activation_string in ACT2FN:
|
24 |
+
return ACT2FN[activation_string]
|
25 |
+
else:
|
26 |
+
raise KeyError("function {} not found in ACT2FN mapping {}".format(activation_string, list(ACT2FN.keys())))
|
27 |
+
|
28 |
+
def compute_rollout_attention(all_layer_matrices, start_layer=0):
|
29 |
+
# adding residual consideration
|
30 |
+
num_tokens = all_layer_matrices[0].shape[1]
|
31 |
+
batch_size = all_layer_matrices[0].shape[0]
|
32 |
+
eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device)
|
33 |
+
all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))]
|
34 |
+
all_layer_matrices = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True)
|
35 |
+
for i in range(len(all_layer_matrices))]
|
36 |
+
joint_attention = all_layer_matrices[start_layer]
|
37 |
+
for i in range(start_layer+1, len(all_layer_matrices)):
|
38 |
+
joint_attention = all_layer_matrices[i].bmm(joint_attention)
|
39 |
+
return joint_attention
|
40 |
+
|
41 |
+
class BertEmbeddings(nn.Module):
|
42 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
43 |
+
|
44 |
+
def __init__(self, config):
|
45 |
+
super().__init__()
|
46 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
47 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
48 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
49 |
+
|
50 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
51 |
+
# any TensorFlow checkpoint file
|
52 |
+
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
53 |
+
self.dropout = Dropout(config.hidden_dropout_prob)
|
54 |
+
|
55 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
56 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
57 |
+
|
58 |
+
self.add1 = Add()
|
59 |
+
self.add2 = Add()
|
60 |
+
|
61 |
+
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
|
62 |
+
if input_ids is not None:
|
63 |
+
input_shape = input_ids.size()
|
64 |
+
else:
|
65 |
+
input_shape = inputs_embeds.size()[:-1]
|
66 |
+
|
67 |
+
seq_length = input_shape[1]
|
68 |
+
|
69 |
+
if position_ids is None:
|
70 |
+
position_ids = self.position_ids[:, :seq_length]
|
71 |
+
|
72 |
+
if token_type_ids is None:
|
73 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
74 |
+
|
75 |
+
if inputs_embeds is None:
|
76 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
77 |
+
position_embeddings = self.position_embeddings(position_ids)
|
78 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
79 |
+
|
80 |
+
# embeddings = inputs_embeds + position_embeddings + token_type_embeddings
|
81 |
+
embeddings = self.add1([token_type_embeddings, position_embeddings])
|
82 |
+
embeddings = self.add2([embeddings, inputs_embeds])
|
83 |
+
embeddings = self.LayerNorm(embeddings)
|
84 |
+
embeddings = self.dropout(embeddings)
|
85 |
+
return embeddings
|
86 |
+
|
87 |
+
def relprop(self, cam, **kwargs):
|
88 |
+
cam = self.dropout.relprop(cam, **kwargs)
|
89 |
+
cam = self.LayerNorm.relprop(cam, **kwargs)
|
90 |
+
|
91 |
+
# [inputs_embeds, position_embeddings, token_type_embeddings]
|
92 |
+
(cam) = self.add2.relprop(cam, **kwargs)
|
93 |
+
|
94 |
+
return cam
|
95 |
+
|
96 |
+
class BertEncoder(nn.Module):
|
97 |
+
def __init__(self, config):
|
98 |
+
super().__init__()
|
99 |
+
self.config = config
|
100 |
+
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
|
101 |
+
|
102 |
+
def forward(
|
103 |
+
self,
|
104 |
+
hidden_states,
|
105 |
+
attention_mask=None,
|
106 |
+
head_mask=None,
|
107 |
+
encoder_hidden_states=None,
|
108 |
+
encoder_attention_mask=None,
|
109 |
+
output_attentions=False,
|
110 |
+
output_hidden_states=False,
|
111 |
+
return_dict=False,
|
112 |
+
):
|
113 |
+
all_hidden_states = () if output_hidden_states else None
|
114 |
+
all_attentions = () if output_attentions else None
|
115 |
+
for i, layer_module in enumerate(self.layer):
|
116 |
+
if output_hidden_states:
|
117 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
118 |
+
|
119 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
120 |
+
|
121 |
+
if getattr(self.config, "gradient_checkpointing", False):
|
122 |
+
|
123 |
+
def create_custom_forward(module):
|
124 |
+
def custom_forward(*inputs):
|
125 |
+
return module(*inputs, output_attentions)
|
126 |
+
|
127 |
+
return custom_forward
|
128 |
+
|
129 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
130 |
+
create_custom_forward(layer_module),
|
131 |
+
hidden_states,
|
132 |
+
attention_mask,
|
133 |
+
layer_head_mask,
|
134 |
+
)
|
135 |
+
else:
|
136 |
+
layer_outputs = layer_module(
|
137 |
+
hidden_states,
|
138 |
+
attention_mask,
|
139 |
+
layer_head_mask,
|
140 |
+
output_attentions,
|
141 |
+
)
|
142 |
+
hidden_states = layer_outputs[0]
|
143 |
+
if output_attentions:
|
144 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
145 |
+
|
146 |
+
if output_hidden_states:
|
147 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
148 |
+
|
149 |
+
if not return_dict:
|
150 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
151 |
+
return BaseModelOutput(
|
152 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
153 |
+
)
|
154 |
+
|
155 |
+
def relprop(self, cam, **kwargs):
|
156 |
+
# assuming output_hidden_states is False
|
157 |
+
for layer_module in reversed(self.layer):
|
158 |
+
cam = layer_module.relprop(cam, **kwargs)
|
159 |
+
return cam
|
160 |
+
|
161 |
+
# not adding relprop since this is only pooling at the end of the network, does not impact tokens importance
|
162 |
+
class BertPooler(nn.Module):
|
163 |
+
def __init__(self, config):
|
164 |
+
super().__init__()
|
165 |
+
self.dense = Linear(config.hidden_size, config.hidden_size)
|
166 |
+
self.activation = Tanh()
|
167 |
+
self.pool = IndexSelect()
|
168 |
+
|
169 |
+
def forward(self, hidden_states):
|
170 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
171 |
+
# to the first token.
|
172 |
+
self._seq_size = hidden_states.shape[1]
|
173 |
+
|
174 |
+
# first_token_tensor = hidden_states[:, 0]
|
175 |
+
first_token_tensor = self.pool(hidden_states, 1, torch.tensor(0, device=hidden_states.device))
|
176 |
+
first_token_tensor = first_token_tensor.squeeze(1)
|
177 |
+
pooled_output = self.dense(first_token_tensor)
|
178 |
+
pooled_output = self.activation(pooled_output)
|
179 |
+
return pooled_output
|
180 |
+
|
181 |
+
def relprop(self, cam, **kwargs):
|
182 |
+
cam = self.activation.relprop(cam, **kwargs)
|
183 |
+
#print(cam.sum())
|
184 |
+
cam = self.dense.relprop(cam, **kwargs)
|
185 |
+
#print(cam.sum())
|
186 |
+
cam = cam.unsqueeze(1)
|
187 |
+
cam = self.pool.relprop(cam, **kwargs)
|
188 |
+
#print(cam.sum())
|
189 |
+
|
190 |
+
return cam
|
191 |
+
|
192 |
+
class BertAttention(nn.Module):
|
193 |
+
def __init__(self, config):
|
194 |
+
super().__init__()
|
195 |
+
self.self = BertSelfAttention(config)
|
196 |
+
self.output = BertSelfOutput(config)
|
197 |
+
self.pruned_heads = set()
|
198 |
+
self.clone = Clone()
|
199 |
+
|
200 |
+
def prune_heads(self, heads):
|
201 |
+
if len(heads) == 0:
|
202 |
+
return
|
203 |
+
heads, index = find_pruneable_heads_and_indices(
|
204 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
205 |
+
)
|
206 |
+
|
207 |
+
# Prune linear layers
|
208 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
209 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
210 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
211 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
212 |
+
|
213 |
+
# Update hyper params and store pruned heads
|
214 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
215 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
216 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
217 |
+
|
218 |
+
def forward(
|
219 |
+
self,
|
220 |
+
hidden_states,
|
221 |
+
attention_mask=None,
|
222 |
+
head_mask=None,
|
223 |
+
encoder_hidden_states=None,
|
224 |
+
encoder_attention_mask=None,
|
225 |
+
output_attentions=False,
|
226 |
+
):
|
227 |
+
h1, h2 = self.clone(hidden_states, 2)
|
228 |
+
self_outputs = self.self(
|
229 |
+
h1,
|
230 |
+
attention_mask,
|
231 |
+
head_mask,
|
232 |
+
encoder_hidden_states,
|
233 |
+
encoder_attention_mask,
|
234 |
+
output_attentions,
|
235 |
+
)
|
236 |
+
attention_output = self.output(self_outputs[0], h2)
|
237 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
238 |
+
return outputs
|
239 |
+
|
240 |
+
def relprop(self, cam, **kwargs):
|
241 |
+
# assuming that we don't ouput the attentions (outputs = (attention_output,)), self_outputs=(context_layer,)
|
242 |
+
(cam1, cam2) = self.output.relprop(cam, **kwargs)
|
243 |
+
#print(cam1.sum(), cam2.sum(), (cam1 + cam2).sum())
|
244 |
+
cam1 = self.self.relprop(cam1, **kwargs)
|
245 |
+
#print(cam1.sum(), cam2.sum(), (cam1 + cam2).sum())
|
246 |
+
|
247 |
+
return self.clone.relprop((cam1, cam2), **kwargs)
|
248 |
+
|
249 |
+
class BertSelfAttention(nn.Module):
|
250 |
+
def __init__(self, config):
|
251 |
+
super().__init__()
|
252 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
253 |
+
raise ValueError(
|
254 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
255 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
256 |
+
)
|
257 |
+
|
258 |
+
self.num_attention_heads = config.num_attention_heads
|
259 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
260 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
261 |
+
|
262 |
+
self.query = Linear(config.hidden_size, self.all_head_size)
|
263 |
+
self.key = Linear(config.hidden_size, self.all_head_size)
|
264 |
+
self.value = Linear(config.hidden_size, self.all_head_size)
|
265 |
+
|
266 |
+
self.dropout = Dropout(config.attention_probs_dropout_prob)
|
267 |
+
|
268 |
+
self.matmul1 = MatMul()
|
269 |
+
self.matmul2 = MatMul()
|
270 |
+
self.softmax = Softmax(dim=-1)
|
271 |
+
self.add = Add()
|
272 |
+
self.mul = Mul()
|
273 |
+
self.head_mask = None
|
274 |
+
self.attention_mask = None
|
275 |
+
self.clone = Clone()
|
276 |
+
|
277 |
+
self.attn_cam = None
|
278 |
+
self.attn = None
|
279 |
+
self.attn_gradients = None
|
280 |
+
|
281 |
+
def get_attn(self):
|
282 |
+
return self.attn
|
283 |
+
|
284 |
+
def save_attn(self, attn):
|
285 |
+
self.attn = attn
|
286 |
+
|
287 |
+
def save_attn_cam(self, cam):
|
288 |
+
self.attn_cam = cam
|
289 |
+
|
290 |
+
def get_attn_cam(self):
|
291 |
+
return self.attn_cam
|
292 |
+
|
293 |
+
def save_attn_gradients(self, attn_gradients):
|
294 |
+
self.attn_gradients = attn_gradients
|
295 |
+
|
296 |
+
def get_attn_gradients(self):
|
297 |
+
return self.attn_gradients
|
298 |
+
|
299 |
+
def transpose_for_scores(self, x):
|
300 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
301 |
+
x = x.view(*new_x_shape)
|
302 |
+
return x.permute(0, 2, 1, 3)
|
303 |
+
|
304 |
+
def transpose_for_scores_relprop(self, x):
|
305 |
+
return x.permute(0, 2, 1, 3).flatten(2)
|
306 |
+
|
307 |
+
def forward(
|
308 |
+
self,
|
309 |
+
hidden_states,
|
310 |
+
attention_mask=None,
|
311 |
+
head_mask=None,
|
312 |
+
encoder_hidden_states=None,
|
313 |
+
encoder_attention_mask=None,
|
314 |
+
output_attentions=False,
|
315 |
+
):
|
316 |
+
self.head_mask = head_mask
|
317 |
+
self.attention_mask = attention_mask
|
318 |
+
|
319 |
+
h1, h2, h3 = self.clone(hidden_states, 3)
|
320 |
+
mixed_query_layer = self.query(h1)
|
321 |
+
|
322 |
+
# If this is instantiated as a cross-attention module, the keys
|
323 |
+
# and values come from an encoder; the attention mask needs to be
|
324 |
+
# such that the encoder's padding tokens are not attended to.
|
325 |
+
if encoder_hidden_states is not None:
|
326 |
+
mixed_key_layer = self.key(encoder_hidden_states)
|
327 |
+
mixed_value_layer = self.value(encoder_hidden_states)
|
328 |
+
attention_mask = encoder_attention_mask
|
329 |
+
else:
|
330 |
+
mixed_key_layer = self.key(h2)
|
331 |
+
mixed_value_layer = self.value(h3)
|
332 |
+
|
333 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
334 |
+
key_layer = self.transpose_for_scores(mixed_key_layer)
|
335 |
+
value_layer = self.transpose_for_scores(mixed_value_layer)
|
336 |
+
|
337 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
338 |
+
attention_scores = self.matmul1([query_layer, key_layer.transpose(-1, -2)])
|
339 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
340 |
+
if attention_mask is not None:
|
341 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
342 |
+
attention_scores = self.add([attention_scores, attention_mask])
|
343 |
+
|
344 |
+
# Normalize the attention scores to probabilities.
|
345 |
+
attention_probs = self.softmax(attention_scores)
|
346 |
+
|
347 |
+
self.save_attn(attention_probs)
|
348 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
349 |
+
|
350 |
+
# This is actually dropping out entire tokens to attend to, which might
|
351 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
352 |
+
attention_probs = self.dropout(attention_probs)
|
353 |
+
|
354 |
+
# Mask heads if we want to
|
355 |
+
if head_mask is not None:
|
356 |
+
attention_probs = attention_probs * head_mask
|
357 |
+
|
358 |
+
context_layer = self.matmul2([attention_probs, value_layer])
|
359 |
+
|
360 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
361 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
362 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
363 |
+
|
364 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
365 |
+
return outputs
|
366 |
+
|
367 |
+
def relprop(self, cam, **kwargs):
|
368 |
+
# Assume output_attentions == False
|
369 |
+
cam = self.transpose_for_scores(cam)
|
370 |
+
|
371 |
+
# [attention_probs, value_layer]
|
372 |
+
(cam1, cam2) = self.matmul2.relprop(cam, **kwargs)
|
373 |
+
cam1 /= 2
|
374 |
+
cam2 /= 2
|
375 |
+
if self.head_mask is not None:
|
376 |
+
# [attention_probs, head_mask]
|
377 |
+
(cam1, _)= self.mul.relprop(cam1, **kwargs)
|
378 |
+
|
379 |
+
|
380 |
+
self.save_attn_cam(cam1)
|
381 |
+
|
382 |
+
cam1 = self.dropout.relprop(cam1, **kwargs)
|
383 |
+
|
384 |
+
cam1 = self.softmax.relprop(cam1, **kwargs)
|
385 |
+
|
386 |
+
if self.attention_mask is not None:
|
387 |
+
# [attention_scores, attention_mask]
|
388 |
+
(cam1, _) = self.add.relprop(cam1, **kwargs)
|
389 |
+
|
390 |
+
# [query_layer, key_layer.transpose(-1, -2)]
|
391 |
+
(cam1_1, cam1_2) = self.matmul1.relprop(cam1, **kwargs)
|
392 |
+
cam1_1 /= 2
|
393 |
+
cam1_2 /= 2
|
394 |
+
|
395 |
+
# query
|
396 |
+
cam1_1 = self.transpose_for_scores_relprop(cam1_1)
|
397 |
+
cam1_1 = self.query.relprop(cam1_1, **kwargs)
|
398 |
+
|
399 |
+
# key
|
400 |
+
cam1_2 = self.transpose_for_scores_relprop(cam1_2.transpose(-1, -2))
|
401 |
+
cam1_2 = self.key.relprop(cam1_2, **kwargs)
|
402 |
+
|
403 |
+
# value
|
404 |
+
cam2 = self.transpose_for_scores_relprop(cam2)
|
405 |
+
cam2 = self.value.relprop(cam2, **kwargs)
|
406 |
+
|
407 |
+
cam = self.clone.relprop((cam1_1, cam1_2, cam2), **kwargs)
|
408 |
+
|
409 |
+
return cam
|
410 |
+
|
411 |
+
|
412 |
+
class BertSelfOutput(nn.Module):
|
413 |
+
def __init__(self, config):
|
414 |
+
super().__init__()
|
415 |
+
self.dense = Linear(config.hidden_size, config.hidden_size)
|
416 |
+
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
417 |
+
self.dropout = Dropout(config.hidden_dropout_prob)
|
418 |
+
self.add = Add()
|
419 |
+
|
420 |
+
def forward(self, hidden_states, input_tensor):
|
421 |
+
hidden_states = self.dense(hidden_states)
|
422 |
+
hidden_states = self.dropout(hidden_states)
|
423 |
+
add = self.add([hidden_states, input_tensor])
|
424 |
+
hidden_states = self.LayerNorm(add)
|
425 |
+
return hidden_states
|
426 |
+
|
427 |
+
def relprop(self, cam, **kwargs):
|
428 |
+
cam = self.LayerNorm.relprop(cam, **kwargs)
|
429 |
+
# [hidden_states, input_tensor]
|
430 |
+
(cam1, cam2) = self.add.relprop(cam, **kwargs)
|
431 |
+
cam1 = self.dropout.relprop(cam1, **kwargs)
|
432 |
+
cam1 = self.dense.relprop(cam1, **kwargs)
|
433 |
+
|
434 |
+
return (cam1, cam2)
|
435 |
+
|
436 |
+
|
437 |
+
class BertIntermediate(nn.Module):
|
438 |
+
def __init__(self, config):
|
439 |
+
super().__init__()
|
440 |
+
self.dense = Linear(config.hidden_size, config.intermediate_size)
|
441 |
+
if isinstance(config.hidden_act, str):
|
442 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]()
|
443 |
+
else:
|
444 |
+
self.intermediate_act_fn = config.hidden_act
|
445 |
+
|
446 |
+
def forward(self, hidden_states):
|
447 |
+
hidden_states = self.dense(hidden_states)
|
448 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
449 |
+
return hidden_states
|
450 |
+
|
451 |
+
def relprop(self, cam, **kwargs):
|
452 |
+
cam = self.intermediate_act_fn.relprop(cam, **kwargs) # FIXME only ReLU
|
453 |
+
#print(cam.sum())
|
454 |
+
cam = self.dense.relprop(cam, **kwargs)
|
455 |
+
#print(cam.sum())
|
456 |
+
return cam
|
457 |
+
|
458 |
+
|
459 |
+
class BertOutput(nn.Module):
|
460 |
+
def __init__(self, config):
|
461 |
+
super().__init__()
|
462 |
+
self.dense = Linear(config.intermediate_size, config.hidden_size)
|
463 |
+
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
464 |
+
self.dropout = Dropout(config.hidden_dropout_prob)
|
465 |
+
self.add = Add()
|
466 |
+
|
467 |
+
def forward(self, hidden_states, input_tensor):
|
468 |
+
hidden_states = self.dense(hidden_states)
|
469 |
+
hidden_states = self.dropout(hidden_states)
|
470 |
+
add = self.add([hidden_states, input_tensor])
|
471 |
+
hidden_states = self.LayerNorm(add)
|
472 |
+
return hidden_states
|
473 |
+
|
474 |
+
def relprop(self, cam, **kwargs):
|
475 |
+
# print("in", cam.sum())
|
476 |
+
cam = self.LayerNorm.relprop(cam, **kwargs)
|
477 |
+
#print(cam.sum())
|
478 |
+
# [hidden_states, input_tensor]
|
479 |
+
(cam1, cam2)= self.add.relprop(cam, **kwargs)
|
480 |
+
# print("add", cam1.sum(), cam2.sum(), cam1.sum() + cam2.sum())
|
481 |
+
cam1 = self.dropout.relprop(cam1, **kwargs)
|
482 |
+
#print(cam1.sum())
|
483 |
+
cam1 = self.dense.relprop(cam1, **kwargs)
|
484 |
+
# print("dense", cam1.sum())
|
485 |
+
|
486 |
+
# print("out", cam1.sum() + cam2.sum(), cam1.sum(), cam2.sum())
|
487 |
+
return (cam1, cam2)
|
488 |
+
|
489 |
+
|
490 |
+
class BertLayer(nn.Module):
|
491 |
+
def __init__(self, config):
|
492 |
+
super().__init__()
|
493 |
+
self.attention = BertAttention(config)
|
494 |
+
self.intermediate = BertIntermediate(config)
|
495 |
+
self.output = BertOutput(config)
|
496 |
+
self.clone = Clone()
|
497 |
+
|
498 |
+
def forward(
|
499 |
+
self,
|
500 |
+
hidden_states,
|
501 |
+
attention_mask=None,
|
502 |
+
head_mask=None,
|
503 |
+
output_attentions=False,
|
504 |
+
):
|
505 |
+
self_attention_outputs = self.attention(
|
506 |
+
hidden_states,
|
507 |
+
attention_mask,
|
508 |
+
head_mask,
|
509 |
+
output_attentions=output_attentions,
|
510 |
+
)
|
511 |
+
attention_output = self_attention_outputs[0]
|
512 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
513 |
+
|
514 |
+
ao1, ao2 = self.clone(attention_output, 2)
|
515 |
+
intermediate_output = self.intermediate(ao1)
|
516 |
+
layer_output = self.output(intermediate_output, ao2)
|
517 |
+
|
518 |
+
outputs = (layer_output,) + outputs
|
519 |
+
return outputs
|
520 |
+
|
521 |
+
def relprop(self, cam, **kwargs):
|
522 |
+
(cam1, cam2) = self.output.relprop(cam, **kwargs)
|
523 |
+
# print("output", cam1.sum(), cam2.sum(), cam1.sum() + cam2.sum())
|
524 |
+
cam1 = self.intermediate.relprop(cam1, **kwargs)
|
525 |
+
# print("intermediate", cam1.sum())
|
526 |
+
cam = self.clone.relprop((cam1, cam2), **kwargs)
|
527 |
+
# print("clone", cam.sum())
|
528 |
+
cam = self.attention.relprop(cam, **kwargs)
|
529 |
+
# print("attention", cam.sum())
|
530 |
+
return cam
|
531 |
+
|
532 |
+
|
533 |
+
class BertModel(BertPreTrainedModel):
|
534 |
+
def __init__(self, config):
|
535 |
+
super().__init__(config)
|
536 |
+
self.config = config
|
537 |
+
|
538 |
+
self.embeddings = BertEmbeddings(config)
|
539 |
+
self.encoder = BertEncoder(config)
|
540 |
+
self.pooler = BertPooler(config)
|
541 |
+
|
542 |
+
self.init_weights()
|
543 |
+
|
544 |
+
def get_input_embeddings(self):
|
545 |
+
return self.embeddings.word_embeddings
|
546 |
+
|
547 |
+
def set_input_embeddings(self, value):
|
548 |
+
self.embeddings.word_embeddings = value
|
549 |
+
|
550 |
+
def forward(
|
551 |
+
self,
|
552 |
+
input_ids=None,
|
553 |
+
attention_mask=None,
|
554 |
+
token_type_ids=None,
|
555 |
+
position_ids=None,
|
556 |
+
head_mask=None,
|
557 |
+
inputs_embeds=None,
|
558 |
+
encoder_hidden_states=None,
|
559 |
+
encoder_attention_mask=None,
|
560 |
+
output_attentions=None,
|
561 |
+
output_hidden_states=None,
|
562 |
+
return_dict=None,
|
563 |
+
):
|
564 |
+
r"""
|
565 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
566 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
567 |
+
if the model is configured as a decoder.
|
568 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
569 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask
|
570 |
+
is used in the cross-attention if the model is configured as a decoder.
|
571 |
+
Mask values selected in ``[0, 1]``:
|
572 |
+
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
|
573 |
+
"""
|
574 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
575 |
+
output_hidden_states = (
|
576 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
577 |
+
)
|
578 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
579 |
+
|
580 |
+
if input_ids is not None and inputs_embeds is not None:
|
581 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
582 |
+
elif input_ids is not None:
|
583 |
+
input_shape = input_ids.size()
|
584 |
+
elif inputs_embeds is not None:
|
585 |
+
input_shape = inputs_embeds.size()[:-1]
|
586 |
+
else:
|
587 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
588 |
+
|
589 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
590 |
+
|
591 |
+
if attention_mask is None:
|
592 |
+
attention_mask = torch.ones(input_shape, device=device)
|
593 |
+
if token_type_ids is None:
|
594 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
595 |
+
|
596 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
597 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
598 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
599 |
+
|
600 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
601 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
602 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
603 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
604 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
605 |
+
if encoder_attention_mask is None:
|
606 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
607 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
608 |
+
else:
|
609 |
+
encoder_extended_attention_mask = None
|
610 |
+
|
611 |
+
# Prepare head mask if needed
|
612 |
+
# 1.0 in head_mask indicate we keep the head
|
613 |
+
# attention_probs has shape bsz x n_heads x N x N
|
614 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
615 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
616 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
617 |
+
|
618 |
+
embedding_output = self.embeddings(
|
619 |
+
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
|
620 |
+
)
|
621 |
+
|
622 |
+
encoder_outputs = self.encoder(
|
623 |
+
embedding_output,
|
624 |
+
attention_mask=extended_attention_mask,
|
625 |
+
head_mask=head_mask,
|
626 |
+
encoder_hidden_states=encoder_hidden_states,
|
627 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
628 |
+
output_attentions=output_attentions,
|
629 |
+
output_hidden_states=output_hidden_states,
|
630 |
+
return_dict=return_dict,
|
631 |
+
)
|
632 |
+
sequence_output = encoder_outputs[0]
|
633 |
+
pooled_output = self.pooler(sequence_output)
|
634 |
+
|
635 |
+
if not return_dict:
|
636 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
637 |
+
|
638 |
+
return BaseModelOutputWithPooling(
|
639 |
+
last_hidden_state=sequence_output,
|
640 |
+
pooler_output=pooled_output,
|
641 |
+
hidden_states=encoder_outputs.hidden_states,
|
642 |
+
attentions=encoder_outputs.attentions,
|
643 |
+
)
|
644 |
+
|
645 |
+
def relprop(self, cam, **kwargs):
|
646 |
+
cam = self.pooler.relprop(cam, **kwargs)
|
647 |
+
# print("111111111111",cam.sum())
|
648 |
+
cam = self.encoder.relprop(cam, **kwargs)
|
649 |
+
# print("222222222222222", cam.sum())
|
650 |
+
# print("conservation: ", cam.sum())
|
651 |
+
return cam
|
652 |
+
|
653 |
+
|
654 |
+
if __name__ == '__main__':
|
655 |
+
class Config:
|
656 |
+
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob):
|
657 |
+
self.hidden_size = hidden_size
|
658 |
+
self.num_attention_heads = num_attention_heads
|
659 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
660 |
+
|
661 |
+
model = BertSelfAttention(Config(1024, 4, 0.1))
|
662 |
+
x = torch.rand(2, 20, 1024)
|
663 |
+
x.requires_grad_()
|
664 |
+
|
665 |
+
model.eval()
|
666 |
+
|
667 |
+
y = model.forward(x)
|
668 |
+
|
669 |
+
relprop = model.relprop(torch.rand(2, 20, 1024), (torch.rand(2, 20, 1024),))
|
670 |
+
|
671 |
+
print(relprop[1][0].shape)
|
BERT/BERT_explainability/modules/BERT/BERT_cls_lrp.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BertPreTrainedModel
|
2 |
+
from transformers.utils import logging
|
3 |
+
from BERT_explainability.modules.layers_lrp import *
|
4 |
+
from BERT_explainability.modules.BERT.BERT_orig_lrp import BertModel
|
5 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
6 |
+
import torch.nn as nn
|
7 |
+
from typing import List, Any
|
8 |
+
import torch
|
9 |
+
from BERT_rationale_benchmark.models.model_utils import PaddedSequence
|
10 |
+
|
11 |
+
|
12 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
13 |
+
def __init__(self, config):
|
14 |
+
super().__init__(config)
|
15 |
+
self.num_labels = config.num_labels
|
16 |
+
|
17 |
+
self.bert = BertModel(config)
|
18 |
+
self.dropout = Dropout(config.hidden_dropout_prob)
|
19 |
+
self.classifier = Linear(config.hidden_size, config.num_labels)
|
20 |
+
|
21 |
+
self.init_weights()
|
22 |
+
|
23 |
+
def forward(
|
24 |
+
self,
|
25 |
+
input_ids=None,
|
26 |
+
attention_mask=None,
|
27 |
+
token_type_ids=None,
|
28 |
+
position_ids=None,
|
29 |
+
head_mask=None,
|
30 |
+
inputs_embeds=None,
|
31 |
+
labels=None,
|
32 |
+
output_attentions=None,
|
33 |
+
output_hidden_states=None,
|
34 |
+
return_dict=None,
|
35 |
+
):
|
36 |
+
r"""
|
37 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
38 |
+
Labels for computing the sequence classification/regression loss.
|
39 |
+
Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
|
40 |
+
If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
41 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
42 |
+
"""
|
43 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
44 |
+
|
45 |
+
outputs = self.bert(
|
46 |
+
input_ids,
|
47 |
+
attention_mask=attention_mask,
|
48 |
+
token_type_ids=token_type_ids,
|
49 |
+
position_ids=position_ids,
|
50 |
+
head_mask=head_mask,
|
51 |
+
inputs_embeds=inputs_embeds,
|
52 |
+
output_attentions=output_attentions,
|
53 |
+
output_hidden_states=output_hidden_states,
|
54 |
+
return_dict=return_dict,
|
55 |
+
)
|
56 |
+
|
57 |
+
pooled_output = outputs[1]
|
58 |
+
|
59 |
+
pooled_output = self.dropout(pooled_output)
|
60 |
+
logits = self.classifier(pooled_output)
|
61 |
+
|
62 |
+
loss = None
|
63 |
+
if labels is not None:
|
64 |
+
if self.num_labels == 1:
|
65 |
+
# We are doing regression
|
66 |
+
loss_fct = MSELoss()
|
67 |
+
loss = loss_fct(logits.view(-1), labels.view(-1))
|
68 |
+
else:
|
69 |
+
loss_fct = CrossEntropyLoss()
|
70 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
71 |
+
|
72 |
+
if not return_dict:
|
73 |
+
output = (logits,) + outputs[2:]
|
74 |
+
return ((loss,) + output) if loss is not None else output
|
75 |
+
|
76 |
+
return SequenceClassifierOutput(
|
77 |
+
loss=loss,
|
78 |
+
logits=logits,
|
79 |
+
hidden_states=outputs.hidden_states,
|
80 |
+
attentions=outputs.attentions,
|
81 |
+
)
|
82 |
+
|
83 |
+
def relprop(self, cam=None, **kwargs):
|
84 |
+
cam = self.classifier.relprop(cam, **kwargs)
|
85 |
+
cam = self.dropout.relprop(cam, **kwargs)
|
86 |
+
cam = self.bert.relprop(cam, **kwargs)
|
87 |
+
return cam
|
88 |
+
|
89 |
+
|
90 |
+
# this is the actual classifier we will be using
|
91 |
+
class BertClassifier(nn.Module):
|
92 |
+
"""Thin wrapper around BertForSequenceClassification"""
|
93 |
+
|
94 |
+
def __init__(self,
|
95 |
+
bert_dir: str,
|
96 |
+
pad_token_id: int,
|
97 |
+
cls_token_id: int,
|
98 |
+
sep_token_id: int,
|
99 |
+
num_labels: int,
|
100 |
+
max_length: int = 512,
|
101 |
+
use_half_precision=True):
|
102 |
+
super(BertClassifier, self).__init__()
|
103 |
+
bert = BertForSequenceClassification.from_pretrained(bert_dir, num_labels=num_labels)
|
104 |
+
if use_half_precision:
|
105 |
+
import apex
|
106 |
+
bert = bert.half()
|
107 |
+
self.bert = bert
|
108 |
+
self.pad_token_id = pad_token_id
|
109 |
+
self.cls_token_id = cls_token_id
|
110 |
+
self.sep_token_id = sep_token_id
|
111 |
+
self.max_length = max_length
|
112 |
+
|
113 |
+
def forward(self,
|
114 |
+
query: List[torch.tensor],
|
115 |
+
docids: List[Any],
|
116 |
+
document_batch: List[torch.tensor]):
|
117 |
+
assert len(query) == len(document_batch)
|
118 |
+
print(query)
|
119 |
+
# note about device management:
|
120 |
+
# since distributed training is enabled, the inputs to this module can be on *any* device (preferably cpu, since we wrap and unwrap the module)
|
121 |
+
# we want to keep these params on the input device (assuming CPU) for as long as possible for cheap memory access
|
122 |
+
target_device = next(self.parameters()).device
|
123 |
+
cls_token = torch.tensor([self.cls_token_id]).to(device=document_batch[0].device)
|
124 |
+
sep_token = torch.tensor([self.sep_token_id]).to(device=document_batch[0].device)
|
125 |
+
input_tensors = []
|
126 |
+
position_ids = []
|
127 |
+
for q, d in zip(query, document_batch):
|
128 |
+
if len(q) + len(d) + 2 > self.max_length:
|
129 |
+
d = d[:(self.max_length - len(q) - 2)]
|
130 |
+
input_tensors.append(torch.cat([cls_token, q, sep_token, d]))
|
131 |
+
position_ids.append(torch.tensor(list(range(0, len(q) + 1)) + list(range(0, len(d) + 1))))
|
132 |
+
bert_input = PaddedSequence.autopad(input_tensors, batch_first=True, padding_value=self.pad_token_id,
|
133 |
+
device=target_device)
|
134 |
+
positions = PaddedSequence.autopad(position_ids, batch_first=True, padding_value=0, device=target_device)
|
135 |
+
(classes,) = self.bert(bert_input.data,
|
136 |
+
attention_mask=bert_input.mask(on=0.0, off=float('-inf'), device=target_device),
|
137 |
+
position_ids=positions.data)
|
138 |
+
assert torch.all(classes == classes) # for nans
|
139 |
+
|
140 |
+
print(input_tensors[0])
|
141 |
+
print(self.relprop()[0])
|
142 |
+
|
143 |
+
return classes
|
144 |
+
|
145 |
+
def relprop(self, cam=None, **kwargs):
|
146 |
+
return self.bert.relprop(cam, **kwargs)
|
147 |
+
|
148 |
+
|
149 |
+
if __name__ == '__main__':
|
150 |
+
from transformers import BertTokenizer
|
151 |
+
import os
|
152 |
+
|
153 |
+
class Config:
|
154 |
+
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, num_labels,
|
155 |
+
hidden_dropout_prob):
|
156 |
+
self.hidden_size = hidden_size
|
157 |
+
self.num_attention_heads = num_attention_heads
|
158 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
159 |
+
self.num_labels = num_labels
|
160 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
161 |
+
|
162 |
+
|
163 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
164 |
+
x = tokenizer.encode_plus("In this movie the acting is great. The movie is perfect! [sep]",
|
165 |
+
add_special_tokens=True,
|
166 |
+
max_length=512,
|
167 |
+
return_token_type_ids=False,
|
168 |
+
return_attention_mask=True,
|
169 |
+
pad_to_max_length=True,
|
170 |
+
return_tensors='pt',
|
171 |
+
truncation=True)
|
172 |
+
|
173 |
+
print(x['input_ids'])
|
174 |
+
|
175 |
+
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
176 |
+
model_save_file = os.path.join('./BERT_explainability/output_bert/movies/classifier/', 'classifier.pt')
|
177 |
+
model.load_state_dict(torch.load(model_save_file))
|
178 |
+
|
179 |
+
# x = torch.randint(100, (2, 20))
|
180 |
+
# x = torch.tensor([[101, 2054, 2003, 1996, 15792, 1997, 2023, 3319, 1029, 102,
|
181 |
+
# 101, 4079, 102, 101, 6732, 102, 101, 2643, 102, 101,
|
182 |
+
# 2038, 102, 101, 1037, 102, 101, 2933, 102, 101, 2005,
|
183 |
+
# 102, 101, 2032, 102, 101, 1010, 102, 101, 1037, 102,
|
184 |
+
# 101, 3800, 102, 101, 2005, 102, 101, 2010, 102, 101,
|
185 |
+
# 2166, 102, 101, 1010, 102, 101, 1998, 102, 101, 2010,
|
186 |
+
# 102, 101, 4650, 102, 101, 1010, 102, 101, 2002, 102,
|
187 |
+
# 101, 2074, 102, 101, 2515, 102, 101, 1050, 102, 101,
|
188 |
+
# 1005, 102, 101, 1056, 102, 101, 2113, 102, 101, 2054,
|
189 |
+
# 102, 101, 1012, 102]])
|
190 |
+
# x.requires_grad_()
|
191 |
+
|
192 |
+
model.eval()
|
193 |
+
|
194 |
+
y = model(x['input_ids'], x['attention_mask'])
|
195 |
+
print(y)
|
196 |
+
|
197 |
+
cam, _ = model.relprop()
|
198 |
+
|
199 |
+
#print(cam.shape)
|
200 |
+
|
201 |
+
cam = cam.sum(-1)
|
202 |
+
#print(cam)
|
BERT/BERT_explainability/modules/BERT/BERT_orig_lrp.py
ADDED
@@ -0,0 +1,671 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import absolute_import
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import math
|
7 |
+
from transformers import BertConfig
|
8 |
+
from transformers.modeling_outputs import BaseModelOutputWithPooling, BaseModelOutput
|
9 |
+
from BERT_explainability.modules.layers_lrp import *
|
10 |
+
from transformers import (
|
11 |
+
BertPreTrainedModel,
|
12 |
+
PreTrainedModel,
|
13 |
+
)
|
14 |
+
|
15 |
+
ACT2FN = {
|
16 |
+
"relu": ReLU,
|
17 |
+
"tanh": Tanh,
|
18 |
+
"gelu": GELU,
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
def get_activation(activation_string):
|
23 |
+
if activation_string in ACT2FN:
|
24 |
+
return ACT2FN[activation_string]
|
25 |
+
else:
|
26 |
+
raise KeyError("function {} not found in ACT2FN mapping {}".format(activation_string, list(ACT2FN.keys())))
|
27 |
+
|
28 |
+
def compute_rollout_attention(all_layer_matrices, start_layer=0):
|
29 |
+
# adding residual consideration
|
30 |
+
num_tokens = all_layer_matrices[0].shape[1]
|
31 |
+
batch_size = all_layer_matrices[0].shape[0]
|
32 |
+
eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device)
|
33 |
+
all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))]
|
34 |
+
all_layer_matrices = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True)
|
35 |
+
for i in range(len(all_layer_matrices))]
|
36 |
+
joint_attention = all_layer_matrices[start_layer]
|
37 |
+
for i in range(start_layer+1, len(all_layer_matrices)):
|
38 |
+
joint_attention = all_layer_matrices[i].bmm(joint_attention)
|
39 |
+
return joint_attention
|
40 |
+
|
41 |
+
class BertEmbeddings(nn.Module):
|
42 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
43 |
+
|
44 |
+
def __init__(self, config):
|
45 |
+
super().__init__()
|
46 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
47 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
48 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
49 |
+
|
50 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
51 |
+
# any TensorFlow checkpoint file
|
52 |
+
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
53 |
+
self.dropout = Dropout(config.hidden_dropout_prob)
|
54 |
+
|
55 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
56 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
57 |
+
|
58 |
+
self.add1 = Add()
|
59 |
+
self.add2 = Add()
|
60 |
+
|
61 |
+
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
|
62 |
+
if input_ids is not None:
|
63 |
+
input_shape = input_ids.size()
|
64 |
+
else:
|
65 |
+
input_shape = inputs_embeds.size()[:-1]
|
66 |
+
|
67 |
+
seq_length = input_shape[1]
|
68 |
+
|
69 |
+
if position_ids is None:
|
70 |
+
position_ids = self.position_ids[:, :seq_length]
|
71 |
+
|
72 |
+
if token_type_ids is None:
|
73 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
74 |
+
|
75 |
+
if inputs_embeds is None:
|
76 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
77 |
+
position_embeddings = self.position_embeddings(position_ids)
|
78 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
79 |
+
|
80 |
+
# embeddings = inputs_embeds + position_embeddings + token_type_embeddings
|
81 |
+
embeddings = self.add1([token_type_embeddings, position_embeddings])
|
82 |
+
embeddings = self.add2([embeddings, inputs_embeds])
|
83 |
+
embeddings = self.LayerNorm(embeddings)
|
84 |
+
embeddings = self.dropout(embeddings)
|
85 |
+
return embeddings
|
86 |
+
|
87 |
+
def relprop(self, cam, **kwargs):
|
88 |
+
cam = self.dropout.relprop(cam, **kwargs)
|
89 |
+
cam = self.LayerNorm.relprop(cam, **kwargs)
|
90 |
+
|
91 |
+
# [inputs_embeds, position_embeddings, token_type_embeddings]
|
92 |
+
(cam) = self.add2.relprop(cam, **kwargs)
|
93 |
+
|
94 |
+
return cam
|
95 |
+
|
96 |
+
class BertEncoder(nn.Module):
|
97 |
+
def __init__(self, config):
|
98 |
+
super().__init__()
|
99 |
+
self.config = config
|
100 |
+
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
|
101 |
+
|
102 |
+
def forward(
|
103 |
+
self,
|
104 |
+
hidden_states,
|
105 |
+
attention_mask=None,
|
106 |
+
head_mask=None,
|
107 |
+
encoder_hidden_states=None,
|
108 |
+
encoder_attention_mask=None,
|
109 |
+
output_attentions=False,
|
110 |
+
output_hidden_states=False,
|
111 |
+
return_dict=False,
|
112 |
+
):
|
113 |
+
all_hidden_states = () if output_hidden_states else None
|
114 |
+
all_attentions = () if output_attentions else None
|
115 |
+
for i, layer_module in enumerate(self.layer):
|
116 |
+
if output_hidden_states:
|
117 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
118 |
+
|
119 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
120 |
+
|
121 |
+
if getattr(self.config, "gradient_checkpointing", False):
|
122 |
+
|
123 |
+
def create_custom_forward(module):
|
124 |
+
def custom_forward(*inputs):
|
125 |
+
return module(*inputs, output_attentions)
|
126 |
+
|
127 |
+
return custom_forward
|
128 |
+
|
129 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
130 |
+
create_custom_forward(layer_module),
|
131 |
+
hidden_states,
|
132 |
+
attention_mask,
|
133 |
+
layer_head_mask,
|
134 |
+
)
|
135 |
+
else:
|
136 |
+
layer_outputs = layer_module(
|
137 |
+
hidden_states,
|
138 |
+
attention_mask,
|
139 |
+
layer_head_mask,
|
140 |
+
output_attentions,
|
141 |
+
)
|
142 |
+
hidden_states = layer_outputs[0]
|
143 |
+
if output_attentions:
|
144 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
145 |
+
|
146 |
+
if output_hidden_states:
|
147 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
148 |
+
|
149 |
+
if not return_dict:
|
150 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
151 |
+
return BaseModelOutput(
|
152 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
153 |
+
)
|
154 |
+
|
155 |
+
def relprop(self, cam, **kwargs):
|
156 |
+
# assuming output_hidden_states is False
|
157 |
+
for layer_module in reversed(self.layer):
|
158 |
+
cam = layer_module.relprop(cam, **kwargs)
|
159 |
+
return cam
|
160 |
+
|
161 |
+
# not adding relprop since this is only pooling at the end of the network, does not impact tokens importance
|
162 |
+
class BertPooler(nn.Module):
|
163 |
+
def __init__(self, config):
|
164 |
+
super().__init__()
|
165 |
+
self.dense = Linear(config.hidden_size, config.hidden_size)
|
166 |
+
self.activation = Tanh()
|
167 |
+
self.pool = IndexSelect()
|
168 |
+
|
169 |
+
def forward(self, hidden_states):
|
170 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
171 |
+
# to the first token.
|
172 |
+
self._seq_size = hidden_states.shape[1]
|
173 |
+
|
174 |
+
# first_token_tensor = hidden_states[:, 0]
|
175 |
+
first_token_tensor = self.pool(hidden_states, 1, torch.tensor(0, device=hidden_states.device))
|
176 |
+
first_token_tensor = first_token_tensor.squeeze(1)
|
177 |
+
pooled_output = self.dense(first_token_tensor)
|
178 |
+
pooled_output = self.activation(pooled_output)
|
179 |
+
return pooled_output
|
180 |
+
|
181 |
+
def relprop(self, cam, **kwargs):
|
182 |
+
cam = self.activation.relprop(cam, **kwargs)
|
183 |
+
#print(cam.sum())
|
184 |
+
cam = self.dense.relprop(cam, **kwargs)
|
185 |
+
#print(cam.sum())
|
186 |
+
cam = cam.unsqueeze(1)
|
187 |
+
cam = self.pool.relprop(cam, **kwargs)
|
188 |
+
#print(cam.sum())
|
189 |
+
|
190 |
+
return cam
|
191 |
+
|
192 |
+
class BertAttention(nn.Module):
|
193 |
+
def __init__(self, config):
|
194 |
+
super().__init__()
|
195 |
+
self.self = BertSelfAttention(config)
|
196 |
+
self.output = BertSelfOutput(config)
|
197 |
+
self.pruned_heads = set()
|
198 |
+
self.clone = Clone()
|
199 |
+
|
200 |
+
def prune_heads(self, heads):
|
201 |
+
if len(heads) == 0:
|
202 |
+
return
|
203 |
+
heads, index = find_pruneable_heads_and_indices(
|
204 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
205 |
+
)
|
206 |
+
|
207 |
+
# Prune linear layers
|
208 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
209 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
210 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
211 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
212 |
+
|
213 |
+
# Update hyper params and store pruned heads
|
214 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
215 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
216 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
217 |
+
|
218 |
+
def forward(
|
219 |
+
self,
|
220 |
+
hidden_states,
|
221 |
+
attention_mask=None,
|
222 |
+
head_mask=None,
|
223 |
+
encoder_hidden_states=None,
|
224 |
+
encoder_attention_mask=None,
|
225 |
+
output_attentions=False,
|
226 |
+
):
|
227 |
+
h1, h2 = self.clone(hidden_states, 2)
|
228 |
+
self_outputs = self.self(
|
229 |
+
h1,
|
230 |
+
attention_mask,
|
231 |
+
head_mask,
|
232 |
+
encoder_hidden_states,
|
233 |
+
encoder_attention_mask,
|
234 |
+
output_attentions,
|
235 |
+
)
|
236 |
+
attention_output = self.output(self_outputs[0], h2)
|
237 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
238 |
+
return outputs
|
239 |
+
|
240 |
+
def relprop(self, cam, **kwargs):
|
241 |
+
# assuming that we don't ouput the attentions (outputs = (attention_output,)), self_outputs=(context_layer,)
|
242 |
+
(cam1, cam2) = self.output.relprop(cam, **kwargs)
|
243 |
+
#print(cam1.sum(), cam2.sum(), (cam1 + cam2).sum())
|
244 |
+
cam1 = self.self.relprop(cam1, **kwargs)
|
245 |
+
#print(cam1.sum(), cam2.sum(), (cam1 + cam2).sum())
|
246 |
+
|
247 |
+
return self.clone.relprop((cam1, cam2), **kwargs)
|
248 |
+
|
249 |
+
class BertSelfAttention(nn.Module):
|
250 |
+
def __init__(self, config):
|
251 |
+
super().__init__()
|
252 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
253 |
+
raise ValueError(
|
254 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
255 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
256 |
+
)
|
257 |
+
|
258 |
+
self.num_attention_heads = config.num_attention_heads
|
259 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
260 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
261 |
+
|
262 |
+
self.query = Linear(config.hidden_size, self.all_head_size)
|
263 |
+
self.key = Linear(config.hidden_size, self.all_head_size)
|
264 |
+
self.value = Linear(config.hidden_size, self.all_head_size)
|
265 |
+
|
266 |
+
self.dropout = Dropout(config.attention_probs_dropout_prob)
|
267 |
+
|
268 |
+
self.matmul1 = MatMul()
|
269 |
+
self.matmul2 = MatMul()
|
270 |
+
self.softmax = Softmax(dim=-1)
|
271 |
+
self.add = Add()
|
272 |
+
self.mul = Mul()
|
273 |
+
self.head_mask = None
|
274 |
+
self.attention_mask = None
|
275 |
+
self.clone = Clone()
|
276 |
+
|
277 |
+
self.attn_cam = None
|
278 |
+
self.attn = None
|
279 |
+
self.attn_gradients = None
|
280 |
+
|
281 |
+
def get_attn(self):
|
282 |
+
return self.attn
|
283 |
+
|
284 |
+
def save_attn(self, attn):
|
285 |
+
self.attn = attn
|
286 |
+
|
287 |
+
def save_attn_cam(self, cam):
|
288 |
+
self.attn_cam = cam
|
289 |
+
|
290 |
+
def get_attn_cam(self):
|
291 |
+
return self.attn_cam
|
292 |
+
|
293 |
+
def save_attn_gradients(self, attn_gradients):
|
294 |
+
self.attn_gradients = attn_gradients
|
295 |
+
|
296 |
+
def get_attn_gradients(self):
|
297 |
+
return self.attn_gradients
|
298 |
+
|
299 |
+
def transpose_for_scores(self, x):
|
300 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
301 |
+
x = x.view(*new_x_shape)
|
302 |
+
return x.permute(0, 2, 1, 3)
|
303 |
+
|
304 |
+
def transpose_for_scores_relprop(self, x):
|
305 |
+
return x.permute(0, 2, 1, 3).flatten(2)
|
306 |
+
|
307 |
+
def forward(
|
308 |
+
self,
|
309 |
+
hidden_states,
|
310 |
+
attention_mask=None,
|
311 |
+
head_mask=None,
|
312 |
+
encoder_hidden_states=None,
|
313 |
+
encoder_attention_mask=None,
|
314 |
+
output_attentions=False,
|
315 |
+
):
|
316 |
+
self.head_mask = head_mask
|
317 |
+
self.attention_mask = attention_mask
|
318 |
+
|
319 |
+
h1, h2, h3 = self.clone(hidden_states, 3)
|
320 |
+
mixed_query_layer = self.query(h1)
|
321 |
+
|
322 |
+
# If this is instantiated as a cross-attention module, the keys
|
323 |
+
# and values come from an encoder; the attention mask needs to be
|
324 |
+
# such that the encoder's padding tokens are not attended to.
|
325 |
+
if encoder_hidden_states is not None:
|
326 |
+
mixed_key_layer = self.key(encoder_hidden_states)
|
327 |
+
mixed_value_layer = self.value(encoder_hidden_states)
|
328 |
+
attention_mask = encoder_attention_mask
|
329 |
+
else:
|
330 |
+
mixed_key_layer = self.key(h2)
|
331 |
+
mixed_value_layer = self.value(h3)
|
332 |
+
|
333 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
334 |
+
key_layer = self.transpose_for_scores(mixed_key_layer)
|
335 |
+
value_layer = self.transpose_for_scores(mixed_value_layer)
|
336 |
+
|
337 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
338 |
+
attention_scores = self.matmul1([query_layer, key_layer.transpose(-1, -2)])
|
339 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
340 |
+
if attention_mask is not None:
|
341 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
342 |
+
attention_scores = self.add([attention_scores, attention_mask])
|
343 |
+
|
344 |
+
# Normalize the attention scores to probabilities.
|
345 |
+
attention_probs = self.softmax(attention_scores)
|
346 |
+
|
347 |
+
self.save_attn(attention_probs)
|
348 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
349 |
+
|
350 |
+
# This is actually dropping out entire tokens to attend to, which might
|
351 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
352 |
+
attention_probs = self.dropout(attention_probs)
|
353 |
+
|
354 |
+
# Mask heads if we want to
|
355 |
+
if head_mask is not None:
|
356 |
+
attention_probs = attention_probs * head_mask
|
357 |
+
|
358 |
+
context_layer = self.matmul2([attention_probs, value_layer])
|
359 |
+
|
360 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
361 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
362 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
363 |
+
|
364 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
365 |
+
return outputs
|
366 |
+
|
367 |
+
def relprop(self, cam, **kwargs):
|
368 |
+
# Assume output_attentions == False
|
369 |
+
cam = self.transpose_for_scores(cam)
|
370 |
+
|
371 |
+
# [attention_probs, value_layer]
|
372 |
+
(cam1, cam2) = self.matmul2.relprop(cam, **kwargs)
|
373 |
+
cam1 /= 2
|
374 |
+
cam2 /= 2
|
375 |
+
if self.head_mask is not None:
|
376 |
+
# [attention_probs, head_mask]
|
377 |
+
(cam1, _)= self.mul.relprop(cam1, **kwargs)
|
378 |
+
|
379 |
+
|
380 |
+
self.save_attn_cam(cam1)
|
381 |
+
|
382 |
+
cam1 = self.dropout.relprop(cam1, **kwargs)
|
383 |
+
|
384 |
+
cam1 = self.softmax.relprop(cam1, **kwargs)
|
385 |
+
|
386 |
+
if self.attention_mask is not None:
|
387 |
+
# [attention_scores, attention_mask]
|
388 |
+
(cam1, _) = self.add.relprop(cam1, **kwargs)
|
389 |
+
|
390 |
+
# [query_layer, key_layer.transpose(-1, -2)]
|
391 |
+
(cam1_1, cam1_2) = self.matmul1.relprop(cam1, **kwargs)
|
392 |
+
cam1_1 /= 2
|
393 |
+
cam1_2 /= 2
|
394 |
+
|
395 |
+
# query
|
396 |
+
cam1_1 = self.transpose_for_scores_relprop(cam1_1)
|
397 |
+
cam1_1 = self.query.relprop(cam1_1, **kwargs)
|
398 |
+
|
399 |
+
# key
|
400 |
+
cam1_2 = self.transpose_for_scores_relprop(cam1_2.transpose(-1, -2))
|
401 |
+
cam1_2 = self.key.relprop(cam1_2, **kwargs)
|
402 |
+
|
403 |
+
# value
|
404 |
+
cam2 = self.transpose_for_scores_relprop(cam2)
|
405 |
+
cam2 = self.value.relprop(cam2, **kwargs)
|
406 |
+
|
407 |
+
cam = self.clone.relprop((cam1_1, cam1_2, cam2), **kwargs)
|
408 |
+
|
409 |
+
return cam
|
410 |
+
|
411 |
+
|
412 |
+
class BertSelfOutput(nn.Module):
|
413 |
+
def __init__(self, config):
|
414 |
+
super().__init__()
|
415 |
+
self.dense = Linear(config.hidden_size, config.hidden_size)
|
416 |
+
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
417 |
+
self.dropout = Dropout(config.hidden_dropout_prob)
|
418 |
+
self.add = Add()
|
419 |
+
|
420 |
+
def forward(self, hidden_states, input_tensor):
|
421 |
+
hidden_states = self.dense(hidden_states)
|
422 |
+
hidden_states = self.dropout(hidden_states)
|
423 |
+
add = self.add([hidden_states, input_tensor])
|
424 |
+
hidden_states = self.LayerNorm(add)
|
425 |
+
return hidden_states
|
426 |
+
|
427 |
+
def relprop(self, cam, **kwargs):
|
428 |
+
cam = self.LayerNorm.relprop(cam, **kwargs)
|
429 |
+
# [hidden_states, input_tensor]
|
430 |
+
(cam1, cam2) = self.add.relprop(cam, **kwargs)
|
431 |
+
cam1 = self.dropout.relprop(cam1, **kwargs)
|
432 |
+
cam1 = self.dense.relprop(cam1, **kwargs)
|
433 |
+
|
434 |
+
return (cam1, cam2)
|
435 |
+
|
436 |
+
|
437 |
+
class BertIntermediate(nn.Module):
|
438 |
+
def __init__(self, config):
|
439 |
+
super().__init__()
|
440 |
+
self.dense = Linear(config.hidden_size, config.intermediate_size)
|
441 |
+
if isinstance(config.hidden_act, str):
|
442 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]()
|
443 |
+
else:
|
444 |
+
self.intermediate_act_fn = config.hidden_act
|
445 |
+
|
446 |
+
def forward(self, hidden_states):
|
447 |
+
hidden_states = self.dense(hidden_states)
|
448 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
449 |
+
return hidden_states
|
450 |
+
|
451 |
+
def relprop(self, cam, **kwargs):
|
452 |
+
cam = self.intermediate_act_fn.relprop(cam, **kwargs) # FIXME only ReLU
|
453 |
+
#print(cam.sum())
|
454 |
+
cam = self.dense.relprop(cam, **kwargs)
|
455 |
+
#print(cam.sum())
|
456 |
+
return cam
|
457 |
+
|
458 |
+
|
459 |
+
class BertOutput(nn.Module):
|
460 |
+
def __init__(self, config):
|
461 |
+
super().__init__()
|
462 |
+
self.dense = Linear(config.intermediate_size, config.hidden_size)
|
463 |
+
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
464 |
+
self.dropout = Dropout(config.hidden_dropout_prob)
|
465 |
+
self.add = Add()
|
466 |
+
|
467 |
+
def forward(self, hidden_states, input_tensor):
|
468 |
+
hidden_states = self.dense(hidden_states)
|
469 |
+
hidden_states = self.dropout(hidden_states)
|
470 |
+
add = self.add([hidden_states, input_tensor])
|
471 |
+
hidden_states = self.LayerNorm(add)
|
472 |
+
return hidden_states
|
473 |
+
|
474 |
+
def relprop(self, cam, **kwargs):
|
475 |
+
# print("in", cam.sum())
|
476 |
+
cam = self.LayerNorm.relprop(cam, **kwargs)
|
477 |
+
#print(cam.sum())
|
478 |
+
# [hidden_states, input_tensor]
|
479 |
+
(cam1, cam2)= self.add.relprop(cam, **kwargs)
|
480 |
+
# print("add", cam1.sum(), cam2.sum(), cam1.sum() + cam2.sum())
|
481 |
+
cam1 = self.dropout.relprop(cam1, **kwargs)
|
482 |
+
#print(cam1.sum())
|
483 |
+
cam1 = self.dense.relprop(cam1, **kwargs)
|
484 |
+
# print("dense", cam1.sum())
|
485 |
+
|
486 |
+
# print("out", cam1.sum() + cam2.sum(), cam1.sum(), cam2.sum())
|
487 |
+
return (cam1, cam2)
|
488 |
+
|
489 |
+
|
490 |
+
class BertLayer(nn.Module):
|
491 |
+
def __init__(self, config):
|
492 |
+
super().__init__()
|
493 |
+
self.attention = BertAttention(config)
|
494 |
+
self.intermediate = BertIntermediate(config)
|
495 |
+
self.output = BertOutput(config)
|
496 |
+
self.clone = Clone()
|
497 |
+
|
498 |
+
def forward(
|
499 |
+
self,
|
500 |
+
hidden_states,
|
501 |
+
attention_mask=None,
|
502 |
+
head_mask=None,
|
503 |
+
output_attentions=False,
|
504 |
+
):
|
505 |
+
self_attention_outputs = self.attention(
|
506 |
+
hidden_states,
|
507 |
+
attention_mask,
|
508 |
+
head_mask,
|
509 |
+
output_attentions=output_attentions,
|
510 |
+
)
|
511 |
+
attention_output = self_attention_outputs[0]
|
512 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
513 |
+
|
514 |
+
ao1, ao2 = self.clone(attention_output, 2)
|
515 |
+
intermediate_output = self.intermediate(ao1)
|
516 |
+
layer_output = self.output(intermediate_output, ao2)
|
517 |
+
|
518 |
+
outputs = (layer_output,) + outputs
|
519 |
+
return outputs
|
520 |
+
|
521 |
+
def relprop(self, cam, **kwargs):
|
522 |
+
(cam1, cam2) = self.output.relprop(cam, **kwargs)
|
523 |
+
# print("output", cam1.sum(), cam2.sum(), cam1.sum() + cam2.sum())
|
524 |
+
cam1 = self.intermediate.relprop(cam1, **kwargs)
|
525 |
+
# print("intermediate", cam1.sum())
|
526 |
+
cam = self.clone.relprop((cam1, cam2), **kwargs)
|
527 |
+
# print("clone", cam.sum())
|
528 |
+
cam = self.attention.relprop(cam, **kwargs)
|
529 |
+
# print("attention", cam.sum())
|
530 |
+
return cam
|
531 |
+
|
532 |
+
|
533 |
+
class BertModel(BertPreTrainedModel):
|
534 |
+
def __init__(self, config):
|
535 |
+
super().__init__(config)
|
536 |
+
self.config = config
|
537 |
+
|
538 |
+
self.embeddings = BertEmbeddings(config)
|
539 |
+
self.encoder = BertEncoder(config)
|
540 |
+
self.pooler = BertPooler(config)
|
541 |
+
|
542 |
+
self.init_weights()
|
543 |
+
|
544 |
+
def get_input_embeddings(self):
|
545 |
+
return self.embeddings.word_embeddings
|
546 |
+
|
547 |
+
def set_input_embeddings(self, value):
|
548 |
+
self.embeddings.word_embeddings = value
|
549 |
+
|
550 |
+
def forward(
|
551 |
+
self,
|
552 |
+
input_ids=None,
|
553 |
+
attention_mask=None,
|
554 |
+
token_type_ids=None,
|
555 |
+
position_ids=None,
|
556 |
+
head_mask=None,
|
557 |
+
inputs_embeds=None,
|
558 |
+
encoder_hidden_states=None,
|
559 |
+
encoder_attention_mask=None,
|
560 |
+
output_attentions=None,
|
561 |
+
output_hidden_states=None,
|
562 |
+
return_dict=None,
|
563 |
+
):
|
564 |
+
r"""
|
565 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
566 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
567 |
+
if the model is configured as a decoder.
|
568 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
569 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask
|
570 |
+
is used in the cross-attention if the model is configured as a decoder.
|
571 |
+
Mask values selected in ``[0, 1]``:
|
572 |
+
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
|
573 |
+
"""
|
574 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
575 |
+
output_hidden_states = (
|
576 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
577 |
+
)
|
578 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
579 |
+
|
580 |
+
if input_ids is not None and inputs_embeds is not None:
|
581 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
582 |
+
elif input_ids is not None:
|
583 |
+
input_shape = input_ids.size()
|
584 |
+
elif inputs_embeds is not None:
|
585 |
+
input_shape = inputs_embeds.size()[:-1]
|
586 |
+
else:
|
587 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
588 |
+
|
589 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
590 |
+
|
591 |
+
if attention_mask is None:
|
592 |
+
attention_mask = torch.ones(input_shape, device=device)
|
593 |
+
if token_type_ids is None:
|
594 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
595 |
+
|
596 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
597 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
598 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
599 |
+
|
600 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
601 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
602 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
603 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
604 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
605 |
+
if encoder_attention_mask is None:
|
606 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
607 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
608 |
+
else:
|
609 |
+
encoder_extended_attention_mask = None
|
610 |
+
|
611 |
+
# Prepare head mask if needed
|
612 |
+
# 1.0 in head_mask indicate we keep the head
|
613 |
+
# attention_probs has shape bsz x n_heads x N x N
|
614 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
615 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
616 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
617 |
+
|
618 |
+
embedding_output = self.embeddings(
|
619 |
+
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
|
620 |
+
)
|
621 |
+
|
622 |
+
encoder_outputs = self.encoder(
|
623 |
+
embedding_output,
|
624 |
+
attention_mask=extended_attention_mask,
|
625 |
+
head_mask=head_mask,
|
626 |
+
encoder_hidden_states=encoder_hidden_states,
|
627 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
628 |
+
output_attentions=output_attentions,
|
629 |
+
output_hidden_states=output_hidden_states,
|
630 |
+
return_dict=return_dict,
|
631 |
+
)
|
632 |
+
sequence_output = encoder_outputs[0]
|
633 |
+
pooled_output = self.pooler(sequence_output)
|
634 |
+
|
635 |
+
if not return_dict:
|
636 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
637 |
+
|
638 |
+
return BaseModelOutputWithPooling(
|
639 |
+
last_hidden_state=sequence_output,
|
640 |
+
pooler_output=pooled_output,
|
641 |
+
hidden_states=encoder_outputs.hidden_states,
|
642 |
+
attentions=encoder_outputs.attentions,
|
643 |
+
)
|
644 |
+
|
645 |
+
def relprop(self, cam, **kwargs):
|
646 |
+
cam = self.pooler.relprop(cam, **kwargs)
|
647 |
+
# print("111111111111",cam.sum())
|
648 |
+
cam = self.encoder.relprop(cam, **kwargs)
|
649 |
+
# print("222222222222222", cam.sum())
|
650 |
+
# print("conservation: ", cam.sum())
|
651 |
+
return cam
|
652 |
+
|
653 |
+
|
654 |
+
if __name__ == '__main__':
|
655 |
+
class Config:
|
656 |
+
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob):
|
657 |
+
self.hidden_size = hidden_size
|
658 |
+
self.num_attention_heads = num_attention_heads
|
659 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
660 |
+
|
661 |
+
model = BertSelfAttention(Config(1024, 4, 0.1))
|
662 |
+
x = torch.rand(2, 20, 1024)
|
663 |
+
x.requires_grad_()
|
664 |
+
|
665 |
+
model.eval()
|
666 |
+
|
667 |
+
y = model.forward(x)
|
668 |
+
|
669 |
+
relprop = model.relprop(torch.rand(2, 20, 1024), (torch.rand(2, 20, 1024),))
|
670 |
+
|
671 |
+
print(relprop[1][0].shape)
|
BERT/BERT_explainability/modules/BERT/BertForSequenceClassification.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from turtle import forward
|
2 |
+
|
3 |
+
from transformers import BertPreTrainedModel
|
4 |
+
|
5 |
+
from BERT_explainability.modules.layers_ours import *
|
6 |
+
from BERT_explainability.modules.BERT.BERT import BertModel
|
7 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
8 |
+
import torch.nn as nn
|
9 |
+
from typing import List, Any
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from BERT_rationale_benchmark.models.model_utils import PaddedSequence
|
13 |
+
|
14 |
+
import sys
|
15 |
+
sys.path.append("../../")
|
16 |
+
from sequenceoutput.modeling_output import SequenceClassifierOutput
|
17 |
+
|
18 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
19 |
+
def __init__(self, config):
|
20 |
+
super().__init__(config)
|
21 |
+
self.num_labels = config.num_labels
|
22 |
+
|
23 |
+
self.bert = BertModel(config)
|
24 |
+
self.dropout = Dropout(config.hidden_dropout_prob)
|
25 |
+
self.classifier = Linear(config.hidden_size, config.num_labels)
|
26 |
+
|
27 |
+
self.init_weights()
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
def forward(
|
33 |
+
self,
|
34 |
+
input_ids=None,
|
35 |
+
attention_mask=None,
|
36 |
+
token_type_ids=None,
|
37 |
+
position_ids=None,
|
38 |
+
head_mask=None,
|
39 |
+
inputs_embeds=None,
|
40 |
+
labels=None,
|
41 |
+
output_attentions=None,
|
42 |
+
output_hidden_states=None,
|
43 |
+
return_dict=None,
|
44 |
+
):
|
45 |
+
r"""
|
46 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
47 |
+
Labels for computing the sequence classification/regression loss.
|
48 |
+
Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
|
49 |
+
If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
50 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
51 |
+
"""
|
52 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
53 |
+
|
54 |
+
outputs = self.bert(
|
55 |
+
input_ids,
|
56 |
+
attention_mask=attention_mask,
|
57 |
+
token_type_ids=token_type_ids,
|
58 |
+
position_ids=position_ids,
|
59 |
+
head_mask=head_mask,
|
60 |
+
inputs_embeds=inputs_embeds,
|
61 |
+
output_attentions=output_attentions,
|
62 |
+
output_hidden_states=output_hidden_states,
|
63 |
+
return_dict=return_dict,
|
64 |
+
)
|
65 |
+
|
66 |
+
pooled_output = outputs[1]
|
67 |
+
|
68 |
+
pooled_output = self.dropout(pooled_output)
|
69 |
+
logits = self.classifier(pooled_output)
|
70 |
+
|
71 |
+
loss = None
|
72 |
+
if labels is not None:
|
73 |
+
if self.num_labels == 1:
|
74 |
+
# We are doing regression
|
75 |
+
loss_fct = MSELoss()
|
76 |
+
loss = loss_fct(logits.view(-1), labels.view(-1))
|
77 |
+
else:
|
78 |
+
loss_fct = CrossEntropyLoss()
|
79 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
80 |
+
|
81 |
+
if not return_dict:
|
82 |
+
output = (logits,) + outputs[2:]
|
83 |
+
return ((loss,) + output) if loss is not None else output
|
84 |
+
|
85 |
+
return SequenceClassifierOutput(
|
86 |
+
loss=loss,
|
87 |
+
logits=logits,
|
88 |
+
hidden_states=outputs.hidden_states,
|
89 |
+
attentions=outputs.attentions,
|
90 |
+
)
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
def relprop(self, cam=None, **kwargs):
|
96 |
+
cam = self.classifier.relprop(cam, **kwargs)
|
97 |
+
cam = self.dropout.relprop(cam, **kwargs)
|
98 |
+
cam = self.bert.relprop(cam, **kwargs)
|
99 |
+
# print("conservation: ", cam.sum())
|
100 |
+
return cam
|
101 |
+
|
102 |
+
|
103 |
+
# this is the actual classifier we will be using
|
104 |
+
class BertClassifier(nn.Module):
|
105 |
+
"""Thin wrapper around BertForSequenceClassification"""
|
106 |
+
|
107 |
+
def __init__(self,
|
108 |
+
bert_dir: str,
|
109 |
+
pad_token_id: int,
|
110 |
+
cls_token_id: int,
|
111 |
+
sep_token_id: int,
|
112 |
+
num_labels: int,
|
113 |
+
max_length: int = 512,
|
114 |
+
use_half_precision=True):
|
115 |
+
super(BertClassifier, self).__init__()
|
116 |
+
bert = BertForSequenceClassification.from_pretrained(bert_dir, num_labels=num_labels)
|
117 |
+
if use_half_precision:
|
118 |
+
import apex
|
119 |
+
bert = bert.half()
|
120 |
+
self.bert = bert
|
121 |
+
self.pad_token_id = pad_token_id
|
122 |
+
self.cls_token_id = cls_token_id
|
123 |
+
self.sep_token_id = sep_token_id
|
124 |
+
self.max_length = max_length
|
125 |
+
|
126 |
+
def forward(self,
|
127 |
+
query: List[torch.tensor],
|
128 |
+
docids: List[Any],
|
129 |
+
document_batch: List[torch.tensor]):
|
130 |
+
assert len(query) == len(document_batch)
|
131 |
+
print(query)
|
132 |
+
# note about device management:
|
133 |
+
# since distributed training is enabled, the inputs to this module can be on *any* device (preferably cpu, since we wrap and unwrap the module)
|
134 |
+
# we want to keep these params on the input device (assuming CPU) for as long as possible for cheap memory access
|
135 |
+
target_device = next(self.parameters()).device
|
136 |
+
cls_token = torch.tensor([self.cls_token_id]).to(device=document_batch[0].device)
|
137 |
+
sep_token = torch.tensor([self.sep_token_id]).to(device=document_batch[0].device)
|
138 |
+
input_tensors = []
|
139 |
+
position_ids = []
|
140 |
+
for q, d in zip(query, document_batch):
|
141 |
+
if len(q) + len(d) + 2 > self.max_length:
|
142 |
+
d = d[:(self.max_length - len(q) - 2)]
|
143 |
+
input_tensors.append(torch.cat([cls_token, q, sep_token, d]))
|
144 |
+
position_ids.append(torch.tensor(list(range(0, len(q) + 1)) + list(range(0, len(d) + 1))))
|
145 |
+
bert_input = PaddedSequence.autopad(input_tensors, batch_first=True, padding_value=self.pad_token_id,
|
146 |
+
device=target_device)
|
147 |
+
positions = PaddedSequence.autopad(position_ids, batch_first=True, padding_value=0, device=target_device)
|
148 |
+
(classes,) = self.bert(bert_input.data,
|
149 |
+
attention_mask=bert_input.mask(on=0.0, off=float('-inf'), device=target_device),
|
150 |
+
position_ids=positions.data)
|
151 |
+
assert torch.all(classes == classes) # for nans
|
152 |
+
|
153 |
+
print(input_tensors[0])
|
154 |
+
print(self.relprop()[0])
|
155 |
+
|
156 |
+
return classes
|
157 |
+
|
158 |
+
def relprop(self, cam=None, **kwargs):
|
159 |
+
return self.bert.relprop(cam, **kwargs)
|
160 |
+
|
161 |
+
|
162 |
+
if __name__ == '__main__':
|
163 |
+
from transformers import BertTokenizer
|
164 |
+
import os
|
165 |
+
|
166 |
+
class Config:
|
167 |
+
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, num_labels,
|
168 |
+
hidden_dropout_prob):
|
169 |
+
self.hidden_size = hidden_size
|
170 |
+
self.num_attention_heads = num_attention_heads
|
171 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
172 |
+
self.num_labels = num_labels
|
173 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
174 |
+
|
175 |
+
|
176 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
177 |
+
x = tokenizer.encode_plus("In this movie the acting is great. The movie is perfect! [sep]",
|
178 |
+
add_special_tokens=True,
|
179 |
+
max_length=512,
|
180 |
+
return_token_type_ids=False,
|
181 |
+
return_attention_mask=True,
|
182 |
+
pad_to_max_length=True,
|
183 |
+
return_tensors='pt',
|
184 |
+
truncation=True)
|
185 |
+
|
186 |
+
print(x['input_ids'])
|
187 |
+
|
188 |
+
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
189 |
+
model_save_file = os.path.join('./BERT_explainability/output_bert/movies/classifier/', 'classifier.pt')
|
190 |
+
model.load_state_dict(torch.load(model_save_file))
|
191 |
+
|
192 |
+
# x = torch.randint(100, (2, 20))
|
193 |
+
# x = torch.tensor([[101, 2054, 2003, 1996, 15792, 1997, 2023, 3319, 1029, 102,
|
194 |
+
# 101, 4079, 102, 101, 6732, 102, 101, 2643, 102, 101,
|
195 |
+
# 2038, 102, 101, 1037, 102, 101, 2933, 102, 101, 2005,
|
196 |
+
# 102, 101, 2032, 102, 101, 1010, 102, 101, 1037, 102,
|
197 |
+
# 101, 3800, 102, 101, 2005, 102, 101, 2010, 102, 101,
|
198 |
+
# 2166, 102, 101, 1010, 102, 101, 1998, 102, 101, 2010,
|
199 |
+
# 102, 101, 4650, 102, 101, 1010, 102, 101, 2002, 102,
|
200 |
+
# 101, 2074, 102, 101, 2515, 102, 101, 1050, 102, 101,
|
201 |
+
# 1005, 102, 101, 1056, 102, 101, 2113, 102, 101, 2054,
|
202 |
+
# 102, 101, 1012, 102]])
|
203 |
+
# x.requires_grad_()
|
204 |
+
|
205 |
+
model.eval()
|
206 |
+
|
207 |
+
y = model(x['input_ids'], x['attention_mask'])
|
208 |
+
print(y)
|
209 |
+
|
210 |
+
cam, _ = model.relprop()
|
211 |
+
|
212 |
+
#print(cam.shape)
|
213 |
+
|
214 |
+
cam = cam.sum(-1)
|
215 |
+
#print(cam)
|
BERT/BERT_explainability/modules/BERT/ExplanationGenerator.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import glob
|
5 |
+
|
6 |
+
# compute rollout between attention layers
|
7 |
+
def compute_rollout_attention(all_layer_matrices, start_layer=0):
|
8 |
+
# adding residual consideration- code adapted from https://github.com/samiraabnar/attention_flow
|
9 |
+
num_tokens = all_layer_matrices[0].shape[1]
|
10 |
+
batch_size = all_layer_matrices[0].shape[0]
|
11 |
+
eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device)
|
12 |
+
all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))]
|
13 |
+
matrices_aug = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True)
|
14 |
+
for i in range(len(all_layer_matrices))]
|
15 |
+
joint_attention = matrices_aug[start_layer]
|
16 |
+
for i in range(start_layer+1, len(matrices_aug)):
|
17 |
+
joint_attention = matrices_aug[i].bmm(joint_attention)
|
18 |
+
return joint_attention
|
19 |
+
|
20 |
+
class Generator:
|
21 |
+
def __init__(self, model):
|
22 |
+
self.model = model
|
23 |
+
self.model.eval()
|
24 |
+
|
25 |
+
def forward(self, input_ids, attention_mask):
|
26 |
+
return self.model(input_ids, attention_mask)
|
27 |
+
|
28 |
+
def generate_LRP(self, input_ids, attention_mask,
|
29 |
+
index=None, start_layer=11):
|
30 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
31 |
+
kwargs = {"alpha": 1}
|
32 |
+
|
33 |
+
if index == None:
|
34 |
+
index = np.argmax(output.cpu().data.numpy(), axis=-1)
|
35 |
+
|
36 |
+
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32)
|
37 |
+
one_hot[0, index] = 1
|
38 |
+
one_hot_vector = one_hot
|
39 |
+
one_hot = torch.from_numpy(one_hot).requires_grad_(True)
|
40 |
+
one_hot = torch.sum(one_hot.cuda() * output)
|
41 |
+
|
42 |
+
self.model.zero_grad()
|
43 |
+
one_hot.backward(retain_graph=True)
|
44 |
+
|
45 |
+
self.model.relprop(torch.tensor(one_hot_vector).to(input_ids.device), **kwargs)
|
46 |
+
|
47 |
+
cams = []
|
48 |
+
blocks = self.model.bert.encoder.layer
|
49 |
+
for blk in blocks:
|
50 |
+
grad = blk.attention.self.get_attn_gradients()
|
51 |
+
cam = blk.attention.self.get_attn_cam()
|
52 |
+
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
|
53 |
+
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
|
54 |
+
cam = grad * cam
|
55 |
+
cam = cam.clamp(min=0).mean(dim=0)
|
56 |
+
cams.append(cam.unsqueeze(0))
|
57 |
+
rollout = compute_rollout_attention(cams, start_layer=start_layer)
|
58 |
+
rollout[:, 0, 0] = rollout[:, 0].min()
|
59 |
+
return rollout[:, 0]
|
60 |
+
|
61 |
+
|
62 |
+
def generate_LRP_last_layer(self, input_ids, attention_mask,
|
63 |
+
index=None):
|
64 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
65 |
+
kwargs = {"alpha": 1}
|
66 |
+
if index == None:
|
67 |
+
index = np.argmax(output.cpu().data.numpy(), axis=-1)
|
68 |
+
|
69 |
+
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32)
|
70 |
+
one_hot[0, index] = 1
|
71 |
+
one_hot_vector = one_hot
|
72 |
+
one_hot = torch.from_numpy(one_hot).requires_grad_(True)
|
73 |
+
one_hot = torch.sum(one_hot.cuda() * output)
|
74 |
+
|
75 |
+
self.model.zero_grad()
|
76 |
+
one_hot.backward(retain_graph=True)
|
77 |
+
|
78 |
+
self.model.relprop(torch.tensor(one_hot_vector).to(input_ids.device), **kwargs)
|
79 |
+
|
80 |
+
cam = self.model.bert.encoder.layer[-1].attention.self.get_attn_cam()[0]
|
81 |
+
cam = cam.clamp(min=0).mean(dim=0).unsqueeze(0)
|
82 |
+
cam[:, 0, 0] = 0
|
83 |
+
return cam[:, 0]
|
84 |
+
|
85 |
+
def generate_full_lrp(self, input_ids, attention_mask,
|
86 |
+
index=None):
|
87 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
88 |
+
kwargs = {"alpha": 1}
|
89 |
+
|
90 |
+
if index == None:
|
91 |
+
index = np.argmax(output.cpu().data.numpy(), axis=-1)
|
92 |
+
|
93 |
+
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32)
|
94 |
+
one_hot[0, index] = 1
|
95 |
+
one_hot_vector = one_hot
|
96 |
+
one_hot = torch.from_numpy(one_hot).requires_grad_(True)
|
97 |
+
one_hot = torch.sum(one_hot.cuda() * output)
|
98 |
+
|
99 |
+
self.model.zero_grad()
|
100 |
+
one_hot.backward(retain_graph=True)
|
101 |
+
|
102 |
+
cam = self.model.relprop(torch.tensor(one_hot_vector).to(input_ids.device), **kwargs)
|
103 |
+
cam = cam.sum(dim=2)
|
104 |
+
cam[:, 0] = 0
|
105 |
+
return cam
|
106 |
+
|
107 |
+
def generate_attn_last_layer(self, input_ids, attention_mask,
|
108 |
+
index=None):
|
109 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
110 |
+
cam = self.model.bert.encoder.layer[-1].attention.self.get_attn()[0]
|
111 |
+
cam = cam.mean(dim=0).unsqueeze(0)
|
112 |
+
cam[:, 0, 0] = 0
|
113 |
+
return cam[:, 0]
|
114 |
+
|
115 |
+
def generate_rollout(self, input_ids, attention_mask, start_layer=0, index=None):
|
116 |
+
self.model.zero_grad()
|
117 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
118 |
+
blocks = self.model.bert.encoder.layer
|
119 |
+
all_layer_attentions = []
|
120 |
+
for blk in blocks:
|
121 |
+
attn_heads = blk.attention.self.get_attn()
|
122 |
+
avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach()
|
123 |
+
all_layer_attentions.append(avg_heads)
|
124 |
+
rollout = compute_rollout_attention(all_layer_attentions, start_layer=start_layer)
|
125 |
+
rollout[:, 0, 0] = 0
|
126 |
+
return rollout[:, 0]
|
127 |
+
|
128 |
+
def generate_attn_gradcam(self, input_ids, attention_mask, index=None):
|
129 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
130 |
+
kwargs = {"alpha": 1}
|
131 |
+
|
132 |
+
if index == None:
|
133 |
+
index = np.argmax(output.cpu().data.numpy(), axis=-1)
|
134 |
+
|
135 |
+
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32)
|
136 |
+
one_hot[0, index] = 1
|
137 |
+
one_hot_vector = one_hot
|
138 |
+
one_hot = torch.from_numpy(one_hot).requires_grad_(True)
|
139 |
+
one_hot = torch.sum(one_hot.cuda() * output)
|
140 |
+
|
141 |
+
self.model.zero_grad()
|
142 |
+
one_hot.backward(retain_graph=True)
|
143 |
+
|
144 |
+
self.model.relprop(torch.tensor(one_hot_vector).to(input_ids.device), **kwargs)
|
145 |
+
|
146 |
+
cam = self.model.bert.encoder.layer[-1].attention.self.get_attn()
|
147 |
+
grad = self.model.bert.encoder.layer[-1].attention.self.get_attn_gradients()
|
148 |
+
|
149 |
+
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
|
150 |
+
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
|
151 |
+
grad = grad.mean(dim=[1, 2], keepdim=True)
|
152 |
+
cam = (cam * grad).mean(0).clamp(min=0).unsqueeze(0)
|
153 |
+
cam = (cam - cam.min()) / (cam.max() - cam.min())
|
154 |
+
cam[:, 0, 0] = 0
|
155 |
+
return cam[:, 0]
|
156 |
+
|
BERT/BERT_explainability/modules/BERT/__pycache__/BERT.cpython-38.pyc
ADDED
Binary file (18.2 kB). View file
|
|
BERT/BERT_explainability/modules/BERT/__pycache__/BertForSequenceClassification.cpython-38.pyc
ADDED
Binary file (5.76 kB). View file
|
|
BERT/BERT_explainability/modules/BERT/__pycache__/ExplanationGenerator.cpython-311.pyc
ADDED
Binary file (12.9 kB). View file
|
|
BERT/BERT_explainability/modules/BERT/__pycache__/ExplanationGenerator.cpython-38.pyc
ADDED
Binary file (5.5 kB). View file
|
|
BERT/BERT_explainability/modules/__init__.py
ADDED
File without changes
|
BERT/BERT_explainability/modules/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (181 Bytes). View file
|
|
BERT/BERT_explainability/modules/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (185 Bytes). View file
|
|
BERT/BERT_explainability/modules/__pycache__/layers_ours.cpython-38.pyc
ADDED
Binary file (10.6 kB). View file
|
|
BERT/BERT_explainability/modules/layers_lrp.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
__all__ = ['forward_hook', 'Clone', 'Add', 'Cat', 'ReLU', 'GELU', 'Dropout', 'BatchNorm2d', 'Linear', 'MaxPool2d',
|
6 |
+
'AdaptiveAvgPool2d', 'AvgPool2d', 'Conv2d', 'Sequential', 'safe_divide', 'einsum', 'Softmax', 'IndexSelect',
|
7 |
+
'LayerNorm', 'AddEye', 'Tanh', 'MatMul', 'Mul']
|
8 |
+
|
9 |
+
|
10 |
+
def safe_divide(a, b):
|
11 |
+
den = b.clamp(min=1e-9) + b.clamp(max=1e-9)
|
12 |
+
den = den + den.eq(0).type(den.type()) * 1e-9
|
13 |
+
return a / den * b.ne(0).type(b.type())
|
14 |
+
|
15 |
+
|
16 |
+
def forward_hook(self, input, output):
|
17 |
+
if type(input[0]) in (list, tuple):
|
18 |
+
self.X = []
|
19 |
+
for i in input[0]:
|
20 |
+
x = i.detach()
|
21 |
+
x.requires_grad = True
|
22 |
+
self.X.append(x)
|
23 |
+
else:
|
24 |
+
self.X = input[0].detach()
|
25 |
+
self.X.requires_grad = True
|
26 |
+
|
27 |
+
self.Y = output
|
28 |
+
|
29 |
+
|
30 |
+
def backward_hook(self, grad_input, grad_output):
|
31 |
+
self.grad_input = grad_input
|
32 |
+
self.grad_output = grad_output
|
33 |
+
|
34 |
+
|
35 |
+
class RelProp(nn.Module):
|
36 |
+
def __init__(self):
|
37 |
+
super(RelProp, self).__init__()
|
38 |
+
# if not self.training:
|
39 |
+
self.register_forward_hook(forward_hook)
|
40 |
+
|
41 |
+
def gradprop(self, Z, X, S):
|
42 |
+
C = torch.autograd.grad(Z, X, S, retain_graph=True)
|
43 |
+
return C
|
44 |
+
|
45 |
+
def relprop(self, R, alpha):
|
46 |
+
return R
|
47 |
+
|
48 |
+
|
49 |
+
class RelPropSimple(RelProp):
|
50 |
+
def relprop(self, R, alpha):
|
51 |
+
Z = self.forward(self.X)
|
52 |
+
S = safe_divide(R, Z)
|
53 |
+
C = self.gradprop(Z, self.X, S)
|
54 |
+
|
55 |
+
if torch.is_tensor(self.X) == False:
|
56 |
+
outputs = []
|
57 |
+
outputs.append(self.X[0] * C[0])
|
58 |
+
outputs.append(self.X[1] * C[1])
|
59 |
+
else:
|
60 |
+
outputs = self.X * (C[0])
|
61 |
+
return outputs
|
62 |
+
|
63 |
+
class AddEye(RelPropSimple):
|
64 |
+
# input of shape B, C, seq_len, seq_len
|
65 |
+
def forward(self, input):
|
66 |
+
return input + torch.eye(input.shape[2]).expand_as(input).to(input.device)
|
67 |
+
|
68 |
+
class ReLU(nn.ReLU, RelProp):
|
69 |
+
pass
|
70 |
+
|
71 |
+
class Tanh(nn.Tanh, RelProp):
|
72 |
+
pass
|
73 |
+
|
74 |
+
class GELU(nn.GELU, RelProp):
|
75 |
+
pass
|
76 |
+
|
77 |
+
class Softmax(nn.Softmax, RelProp):
|
78 |
+
pass
|
79 |
+
|
80 |
+
class LayerNorm(nn.LayerNorm, RelProp):
|
81 |
+
pass
|
82 |
+
|
83 |
+
class Dropout(nn.Dropout, RelProp):
|
84 |
+
pass
|
85 |
+
|
86 |
+
|
87 |
+
class MaxPool2d(nn.MaxPool2d, RelPropSimple):
|
88 |
+
pass
|
89 |
+
|
90 |
+
class LayerNorm(nn.LayerNorm, RelProp):
|
91 |
+
pass
|
92 |
+
|
93 |
+
class AdaptiveAvgPool2d(nn.AdaptiveAvgPool2d, RelPropSimple):
|
94 |
+
pass
|
95 |
+
|
96 |
+
class MatMul(RelPropSimple):
|
97 |
+
def forward(self, inputs):
|
98 |
+
return torch.matmul(*inputs)
|
99 |
+
|
100 |
+
class Mul(RelPropSimple):
|
101 |
+
def forward(self, inputs):
|
102 |
+
return torch.mul(*inputs)
|
103 |
+
|
104 |
+
class AvgPool2d(nn.AvgPool2d, RelPropSimple):
|
105 |
+
pass
|
106 |
+
|
107 |
+
|
108 |
+
class Add(RelPropSimple):
|
109 |
+
def forward(self, inputs):
|
110 |
+
return torch.add(*inputs)
|
111 |
+
|
112 |
+
class einsum(RelPropSimple):
|
113 |
+
def __init__(self, equation):
|
114 |
+
super().__init__()
|
115 |
+
self.equation = equation
|
116 |
+
def forward(self, *operands):
|
117 |
+
return torch.einsum(self.equation, *operands)
|
118 |
+
|
119 |
+
class IndexSelect(RelProp):
|
120 |
+
def forward(self, inputs, dim, indices):
|
121 |
+
self.__setattr__('dim', dim)
|
122 |
+
self.__setattr__('indices', indices)
|
123 |
+
|
124 |
+
return torch.index_select(inputs, dim, indices)
|
125 |
+
|
126 |
+
def relprop(self, R, alpha):
|
127 |
+
Z = self.forward(self.X, self.dim, self.indices)
|
128 |
+
S = safe_divide(R, Z)
|
129 |
+
C = self.gradprop(Z, self.X, S)
|
130 |
+
|
131 |
+
if torch.is_tensor(self.X) == False:
|
132 |
+
outputs = []
|
133 |
+
outputs.append(self.X[0] * C[0])
|
134 |
+
outputs.append(self.X[1] * C[1])
|
135 |
+
else:
|
136 |
+
outputs = self.X * (C[0])
|
137 |
+
return outputs
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
class Clone(RelProp):
|
142 |
+
def forward(self, input, num):
|
143 |
+
self.__setattr__('num', num)
|
144 |
+
outputs = []
|
145 |
+
for _ in range(num):
|
146 |
+
outputs.append(input)
|
147 |
+
|
148 |
+
return outputs
|
149 |
+
|
150 |
+
def relprop(self, R, alpha):
|
151 |
+
Z = []
|
152 |
+
for _ in range(self.num):
|
153 |
+
Z.append(self.X)
|
154 |
+
S = [safe_divide(r, z) for r, z in zip(R, Z)]
|
155 |
+
C = self.gradprop(Z, self.X, S)[0]
|
156 |
+
|
157 |
+
R = self.X * C
|
158 |
+
|
159 |
+
return R
|
160 |
+
|
161 |
+
class Cat(RelProp):
|
162 |
+
def forward(self, inputs, dim):
|
163 |
+
self.__setattr__('dim', dim)
|
164 |
+
return torch.cat(inputs, dim)
|
165 |
+
|
166 |
+
def relprop(self, R, alpha):
|
167 |
+
Z = self.forward(self.X, self.dim)
|
168 |
+
S = safe_divide(R, Z)
|
169 |
+
C = self.gradprop(Z, self.X, S)
|
170 |
+
|
171 |
+
outputs = []
|
172 |
+
for x, c in zip(self.X, C):
|
173 |
+
outputs.append(x * c)
|
174 |
+
|
175 |
+
return outputs
|
176 |
+
|
177 |
+
class Sequential(nn.Sequential):
|
178 |
+
def relprop(self, R, alpha):
|
179 |
+
for m in reversed(self._modules.values()):
|
180 |
+
R = m.relprop(R, alpha)
|
181 |
+
return R
|
182 |
+
|
183 |
+
class BatchNorm2d(nn.BatchNorm2d, RelProp):
|
184 |
+
def relprop(self, R, alpha):
|
185 |
+
X = self.X
|
186 |
+
beta = 1 - alpha
|
187 |
+
weight = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3) / (
|
188 |
+
(self.running_var.unsqueeze(0).unsqueeze(2).unsqueeze(3).pow(2) + self.eps).pow(0.5))
|
189 |
+
Z = X * weight + 1e-9
|
190 |
+
S = R / Z
|
191 |
+
Ca = S * weight
|
192 |
+
R = self.X * (Ca)
|
193 |
+
return R
|
194 |
+
|
195 |
+
|
196 |
+
class Linear(nn.Linear, RelProp):
|
197 |
+
def relprop(self, R, alpha):
|
198 |
+
beta = alpha - 1
|
199 |
+
pw = torch.clamp(self.weight, min=0)
|
200 |
+
nw = torch.clamp(self.weight, max=0)
|
201 |
+
px = torch.clamp(self.X, min=0)
|
202 |
+
nx = torch.clamp(self.X, max=0)
|
203 |
+
|
204 |
+
def f(w1, w2, x1, x2):
|
205 |
+
Z1 = F.linear(x1, w1)
|
206 |
+
Z2 = F.linear(x2, w2)
|
207 |
+
S1 = safe_divide(R, Z1)
|
208 |
+
S2 = safe_divide(R, Z2)
|
209 |
+
C1 = x1 * torch.autograd.grad(Z1, x1, S1)[0]
|
210 |
+
C2 = x2 * torch.autograd.grad(Z2, x2, S2)[0]
|
211 |
+
|
212 |
+
return C1 + C2
|
213 |
+
|
214 |
+
activator_relevances = f(pw, nw, px, nx)
|
215 |
+
inhibitor_relevances = f(nw, pw, px, nx)
|
216 |
+
|
217 |
+
R = alpha * activator_relevances - beta * inhibitor_relevances
|
218 |
+
|
219 |
+
return R
|
220 |
+
|
221 |
+
class Conv2d(nn.Conv2d, RelProp):
|
222 |
+
def gradprop2(self, DY, weight):
|
223 |
+
Z = self.forward(self.X)
|
224 |
+
|
225 |
+
output_padding = self.X.size()[2] - (
|
226 |
+
(Z.size()[2] - 1) * self.stride[0] - 2 * self.padding[0] + self.kernel_size[0])
|
227 |
+
|
228 |
+
return F.conv_transpose2d(DY, weight, stride=self.stride, padding=self.padding, output_padding=output_padding)
|
229 |
+
|
230 |
+
def relprop(self, R, alpha):
|
231 |
+
if self.X.shape[1] == 3:
|
232 |
+
pw = torch.clamp(self.weight, min=0)
|
233 |
+
nw = torch.clamp(self.weight, max=0)
|
234 |
+
X = self.X
|
235 |
+
L = self.X * 0 + \
|
236 |
+
torch.min(torch.min(torch.min(self.X, dim=1, keepdim=True)[0], dim=2, keepdim=True)[0], dim=3,
|
237 |
+
keepdim=True)[0]
|
238 |
+
H = self.X * 0 + \
|
239 |
+
torch.max(torch.max(torch.max(self.X, dim=1, keepdim=True)[0], dim=2, keepdim=True)[0], dim=3,
|
240 |
+
keepdim=True)[0]
|
241 |
+
Za = torch.conv2d(X, self.weight, bias=None, stride=self.stride, padding=self.padding) - \
|
242 |
+
torch.conv2d(L, pw, bias=None, stride=self.stride, padding=self.padding) - \
|
243 |
+
torch.conv2d(H, nw, bias=None, stride=self.stride, padding=self.padding) + 1e-9
|
244 |
+
|
245 |
+
S = R / Za
|
246 |
+
C = X * self.gradprop2(S, self.weight) - L * self.gradprop2(S, pw) - H * self.gradprop2(S, nw)
|
247 |
+
R = C
|
248 |
+
else:
|
249 |
+
beta = alpha - 1
|
250 |
+
pw = torch.clamp(self.weight, min=0)
|
251 |
+
nw = torch.clamp(self.weight, max=0)
|
252 |
+
px = torch.clamp(self.X, min=0)
|
253 |
+
nx = torch.clamp(self.X, max=0)
|
254 |
+
|
255 |
+
def f(w1, w2, x1, x2):
|
256 |
+
Z1 = F.conv2d(x1, w1, bias=None, stride=self.stride, padding=self.padding)
|
257 |
+
Z2 = F.conv2d(x2, w2, bias=None, stride=self.stride, padding=self.padding)
|
258 |
+
S1 = safe_divide(R, Z1)
|
259 |
+
S2 = safe_divide(R, Z2)
|
260 |
+
C1 = x1 * self.gradprop(Z1, x1, S1)[0]
|
261 |
+
C2 = x2 * self.gradprop(Z2, x2, S2)[0]
|
262 |
+
return C1 + C2
|
263 |
+
|
264 |
+
activator_relevances = f(pw, nw, px, nx)
|
265 |
+
inhibitor_relevances = f(nw, pw, px, nx)
|
266 |
+
|
267 |
+
R = alpha * activator_relevances - beta * inhibitor_relevances
|
268 |
+
return R
|
BERT/BERT_explainability/modules/layers_ours.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
__all__ = ['forward_hook', 'Clone', 'Add', 'Cat', 'ReLU', 'GELU', 'Dropout', 'BatchNorm2d', 'Linear', 'MaxPool2d',
|
6 |
+
'AdaptiveAvgPool2d', 'AvgPool2d', 'Conv2d', 'Sequential', 'safe_divide', 'einsum', 'Softmax', 'IndexSelect',
|
7 |
+
'LayerNorm', 'AddEye', 'Tanh', 'MatMul', 'Mul']
|
8 |
+
|
9 |
+
|
10 |
+
def safe_divide(a, b):
|
11 |
+
den = b.clamp(min=1e-9) + b.clamp(max=1e-9)
|
12 |
+
den = den + den.eq(0).type(den.type()) * 1e-9
|
13 |
+
return a / den * b.ne(0).type(b.type())
|
14 |
+
|
15 |
+
|
16 |
+
def forward_hook(self, input, output):
|
17 |
+
if type(input[0]) in (list, tuple):
|
18 |
+
self.X = []
|
19 |
+
for i in input[0]:
|
20 |
+
x = i.detach()
|
21 |
+
x.requires_grad = True
|
22 |
+
self.X.append(x)
|
23 |
+
else:
|
24 |
+
self.X = input[0].detach()
|
25 |
+
self.X.requires_grad = True
|
26 |
+
|
27 |
+
self.Y = output
|
28 |
+
|
29 |
+
|
30 |
+
def backward_hook(self, grad_input, grad_output):
|
31 |
+
self.grad_input = grad_input
|
32 |
+
self.grad_output = grad_output
|
33 |
+
|
34 |
+
|
35 |
+
class RelProp(nn.Module):
|
36 |
+
def __init__(self):
|
37 |
+
super(RelProp, self).__init__()
|
38 |
+
# if not self.training:
|
39 |
+
self.register_forward_hook(forward_hook)
|
40 |
+
|
41 |
+
def gradprop(self, Z, X, S):
|
42 |
+
C = torch.autograd.grad(Z, X, S, retain_graph=True)
|
43 |
+
return C
|
44 |
+
|
45 |
+
def relprop(self, R, alpha):
|
46 |
+
return R
|
47 |
+
|
48 |
+
|
49 |
+
class RelPropSimple(RelProp):
|
50 |
+
def relprop(self, R, alpha):
|
51 |
+
Z = self.forward(self.X)
|
52 |
+
S = safe_divide(R, Z)
|
53 |
+
C = self.gradprop(Z, self.X, S)
|
54 |
+
|
55 |
+
if torch.is_tensor(self.X) == False:
|
56 |
+
outputs = []
|
57 |
+
outputs.append(self.X[0] * C[0])
|
58 |
+
outputs.append(self.X[1] * C[1])
|
59 |
+
else:
|
60 |
+
outputs = self.X * (C[0])
|
61 |
+
return outputs
|
62 |
+
|
63 |
+
class AddEye(RelPropSimple):
|
64 |
+
# input of shape B, C, seq_len, seq_len
|
65 |
+
def forward(self, input):
|
66 |
+
return input + torch.eye(input.shape[2]).expand_as(input).to(input.device)
|
67 |
+
|
68 |
+
class ReLU(nn.ReLU, RelProp):
|
69 |
+
pass
|
70 |
+
|
71 |
+
class GELU(nn.GELU, RelProp):
|
72 |
+
pass
|
73 |
+
|
74 |
+
class Softmax(nn.Softmax, RelProp):
|
75 |
+
pass
|
76 |
+
|
77 |
+
class Mul(RelPropSimple):
|
78 |
+
def forward(self, inputs):
|
79 |
+
return torch.mul(*inputs)
|
80 |
+
|
81 |
+
class Tanh(nn.Tanh, RelProp):
|
82 |
+
pass
|
83 |
+
class LayerNorm(nn.LayerNorm, RelProp):
|
84 |
+
pass
|
85 |
+
|
86 |
+
class Dropout(nn.Dropout, RelProp):
|
87 |
+
pass
|
88 |
+
|
89 |
+
class MatMul(RelPropSimple):
|
90 |
+
def forward(self, inputs):
|
91 |
+
return torch.matmul(*inputs)
|
92 |
+
|
93 |
+
class MaxPool2d(nn.MaxPool2d, RelPropSimple):
|
94 |
+
pass
|
95 |
+
|
96 |
+
class LayerNorm(nn.LayerNorm, RelProp):
|
97 |
+
pass
|
98 |
+
|
99 |
+
class AdaptiveAvgPool2d(nn.AdaptiveAvgPool2d, RelPropSimple):
|
100 |
+
pass
|
101 |
+
|
102 |
+
|
103 |
+
class AvgPool2d(nn.AvgPool2d, RelPropSimple):
|
104 |
+
pass
|
105 |
+
|
106 |
+
|
107 |
+
class Add(RelPropSimple):
|
108 |
+
def forward(self, inputs):
|
109 |
+
return torch.add(*inputs)
|
110 |
+
|
111 |
+
def relprop(self, R, alpha):
|
112 |
+
Z = self.forward(self.X)
|
113 |
+
S = safe_divide(R, Z)
|
114 |
+
C = self.gradprop(Z, self.X, S)
|
115 |
+
|
116 |
+
a = self.X[0] * C[0]
|
117 |
+
b = self.X[1] * C[1]
|
118 |
+
|
119 |
+
a_sum = a.sum()
|
120 |
+
b_sum = b.sum()
|
121 |
+
|
122 |
+
a_fact = safe_divide(a_sum.abs(), a_sum.abs() + b_sum.abs()) * R.sum()
|
123 |
+
b_fact = safe_divide(b_sum.abs(), a_sum.abs() + b_sum.abs()) * R.sum()
|
124 |
+
|
125 |
+
a = a * safe_divide(a_fact, a.sum())
|
126 |
+
b = b * safe_divide(b_fact, b.sum())
|
127 |
+
|
128 |
+
outputs = [a, b]
|
129 |
+
|
130 |
+
return outputs
|
131 |
+
|
132 |
+
class einsum(RelPropSimple):
|
133 |
+
def __init__(self, equation):
|
134 |
+
super().__init__()
|
135 |
+
self.equation = equation
|
136 |
+
def forward(self, *operands):
|
137 |
+
return torch.einsum(self.equation, *operands)
|
138 |
+
|
139 |
+
class IndexSelect(RelProp):
|
140 |
+
def forward(self, inputs, dim, indices):
|
141 |
+
self.__setattr__('dim', dim)
|
142 |
+
self.__setattr__('indices', indices)
|
143 |
+
|
144 |
+
return torch.index_select(inputs, dim, indices)
|
145 |
+
|
146 |
+
def relprop(self, R, alpha):
|
147 |
+
Z = self.forward(self.X, self.dim, self.indices)
|
148 |
+
S = safe_divide(R, Z)
|
149 |
+
C = self.gradprop(Z, self.X, S)
|
150 |
+
|
151 |
+
if torch.is_tensor(self.X) == False:
|
152 |
+
outputs = []
|
153 |
+
outputs.append(self.X[0] * C[0])
|
154 |
+
outputs.append(self.X[1] * C[1])
|
155 |
+
else:
|
156 |
+
outputs = self.X * (C[0])
|
157 |
+
return outputs
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
class Clone(RelProp):
|
162 |
+
def forward(self, input, num):
|
163 |
+
self.__setattr__('num', num)
|
164 |
+
outputs = []
|
165 |
+
for _ in range(num):
|
166 |
+
outputs.append(input)
|
167 |
+
|
168 |
+
return outputs
|
169 |
+
|
170 |
+
def relprop(self, R, alpha):
|
171 |
+
Z = []
|
172 |
+
for _ in range(self.num):
|
173 |
+
Z.append(self.X)
|
174 |
+
S = [safe_divide(r, z) for r, z in zip(R, Z)]
|
175 |
+
C = self.gradprop(Z, self.X, S)[0]
|
176 |
+
|
177 |
+
R = self.X * C
|
178 |
+
|
179 |
+
return R
|
180 |
+
|
181 |
+
|
182 |
+
class Cat(RelProp):
|
183 |
+
def forward(self, inputs, dim):
|
184 |
+
self.__setattr__('dim', dim)
|
185 |
+
return torch.cat(inputs, dim)
|
186 |
+
|
187 |
+
def relprop(self, R, alpha):
|
188 |
+
Z = self.forward(self.X, self.dim)
|
189 |
+
S = safe_divide(R, Z)
|
190 |
+
C = self.gradprop(Z, self.X, S)
|
191 |
+
|
192 |
+
outputs = []
|
193 |
+
for x, c in zip(self.X, C):
|
194 |
+
outputs.append(x * c)
|
195 |
+
|
196 |
+
return outputs
|
197 |
+
|
198 |
+
|
199 |
+
class Sequential(nn.Sequential):
|
200 |
+
def relprop(self, R, alpha):
|
201 |
+
for m in reversed(self._modules.values()):
|
202 |
+
R = m.relprop(R, alpha)
|
203 |
+
return R
|
204 |
+
|
205 |
+
|
206 |
+
class BatchNorm2d(nn.BatchNorm2d, RelProp):
|
207 |
+
def relprop(self, R, alpha):
|
208 |
+
X = self.X
|
209 |
+
beta = 1 - alpha
|
210 |
+
weight = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3) / (
|
211 |
+
(self.running_var.unsqueeze(0).unsqueeze(2).unsqueeze(3).pow(2) + self.eps).pow(0.5))
|
212 |
+
Z = X * weight + 1e-9
|
213 |
+
S = R / Z
|
214 |
+
Ca = S * weight
|
215 |
+
R = self.X * (Ca)
|
216 |
+
return R
|
217 |
+
|
218 |
+
|
219 |
+
class Linear(nn.Linear, RelProp):
|
220 |
+
def relprop(self, R, alpha):
|
221 |
+
beta = alpha - 1
|
222 |
+
pw = torch.clamp(self.weight, min=0)
|
223 |
+
nw = torch.clamp(self.weight, max=0)
|
224 |
+
px = torch.clamp(self.X, min=0)
|
225 |
+
nx = torch.clamp(self.X, max=0)
|
226 |
+
|
227 |
+
def f(w1, w2, x1, x2):
|
228 |
+
Z1 = F.linear(x1, w1)
|
229 |
+
Z2 = F.linear(x2, w2)
|
230 |
+
S1 = safe_divide(R, Z1 + Z2)
|
231 |
+
S2 = safe_divide(R, Z1 + Z2)
|
232 |
+
C1 = x1 * self.gradprop(Z1, x1, S1)[0]
|
233 |
+
C2 = x2 * self.gradprop(Z2, x2, S2)[0]
|
234 |
+
|
235 |
+
return C1 + C2
|
236 |
+
|
237 |
+
activator_relevances = f(pw, nw, px, nx)
|
238 |
+
inhibitor_relevances = f(nw, pw, px, nx)
|
239 |
+
|
240 |
+
R = alpha * activator_relevances - beta * inhibitor_relevances
|
241 |
+
|
242 |
+
return R
|
243 |
+
|
244 |
+
|
245 |
+
class Conv2d(nn.Conv2d, RelProp):
|
246 |
+
def gradprop2(self, DY, weight):
|
247 |
+
Z = self.forward(self.X)
|
248 |
+
|
249 |
+
output_padding = self.X.size()[2] - (
|
250 |
+
(Z.size()[2] - 1) * self.stride[0] - 2 * self.padding[0] + self.kernel_size[0])
|
251 |
+
|
252 |
+
return F.conv_transpose2d(DY, weight, stride=self.stride, padding=self.padding, output_padding=output_padding)
|
253 |
+
|
254 |
+
def relprop(self, R, alpha):
|
255 |
+
if self.X.shape[1] == 3:
|
256 |
+
pw = torch.clamp(self.weight, min=0)
|
257 |
+
nw = torch.clamp(self.weight, max=0)
|
258 |
+
X = self.X
|
259 |
+
L = self.X * 0 + \
|
260 |
+
torch.min(torch.min(torch.min(self.X, dim=1, keepdim=True)[0], dim=2, keepdim=True)[0], dim=3,
|
261 |
+
keepdim=True)[0]
|
262 |
+
H = self.X * 0 + \
|
263 |
+
torch.max(torch.max(torch.max(self.X, dim=1, keepdim=True)[0], dim=2, keepdim=True)[0], dim=3,
|
264 |
+
keepdim=True)[0]
|
265 |
+
Za = torch.conv2d(X, self.weight, bias=None, stride=self.stride, padding=self.padding) - \
|
266 |
+
torch.conv2d(L, pw, bias=None, stride=self.stride, padding=self.padding) - \
|
267 |
+
torch.conv2d(H, nw, bias=None, stride=self.stride, padding=self.padding) + 1e-9
|
268 |
+
|
269 |
+
S = R / Za
|
270 |
+
C = X * self.gradprop2(S, self.weight) - L * self.gradprop2(S, pw) - H * self.gradprop2(S, nw)
|
271 |
+
R = C
|
272 |
+
else:
|
273 |
+
beta = alpha - 1
|
274 |
+
pw = torch.clamp(self.weight, min=0)
|
275 |
+
nw = torch.clamp(self.weight, max=0)
|
276 |
+
px = torch.clamp(self.X, min=0)
|
277 |
+
nx = torch.clamp(self.X, max=0)
|
278 |
+
|
279 |
+
def f(w1, w2, x1, x2):
|
280 |
+
Z1 = F.conv2d(x1, w1, bias=None, stride=self.stride, padding=self.padding)
|
281 |
+
Z2 = F.conv2d(x2, w2, bias=None, stride=self.stride, padding=self.padding)
|
282 |
+
S1 = safe_divide(R, Z1)
|
283 |
+
S2 = safe_divide(R, Z2)
|
284 |
+
C1 = x1 * self.gradprop(Z1, x1, S1)[0]
|
285 |
+
C2 = x2 * self.gradprop(Z2, x2, S2)[0]
|
286 |
+
return C1 + C2
|
287 |
+
|
288 |
+
activator_relevances = f(pw, nw, px, nx)
|
289 |
+
inhibitor_relevances = f(nw, pw, px, nx)
|
290 |
+
|
291 |
+
R = alpha * activator_relevances - beta * inhibitor_relevances
|
292 |
+
return R
|
BERT/BERT_params/boolq.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embeddings": {
|
3 |
+
"embedding_file": "model_components/glove.6B.200d.txt",
|
4 |
+
"dropout": 0.05
|
5 |
+
},
|
6 |
+
"evidence_identifier": {
|
7 |
+
"mlp_size": 128,
|
8 |
+
"dropout": 0.2,
|
9 |
+
"batch_size": 768,
|
10 |
+
"epochs": 50,
|
11 |
+
"patience": 10,
|
12 |
+
"lr": 1e-3,
|
13 |
+
"sampling_method": "random",
|
14 |
+
"sampling_ratio": 1.0
|
15 |
+
},
|
16 |
+
"evidence_classifier": {
|
17 |
+
"classes": [ "False", "True" ],
|
18 |
+
"mlp_size": 128,
|
19 |
+
"dropout": 0.2,
|
20 |
+
"batch_size": 768,
|
21 |
+
"epochs": 50,
|
22 |
+
"patience": 10,
|
23 |
+
"lr": 1e-3,
|
24 |
+
"sampling_method": "everything"
|
25 |
+
}
|
26 |
+
}
|
BERT/BERT_params/boolq_baas.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"start_server": 0,
|
3 |
+
"bert_dir": "model_components/uncased_L-12_H-768_A-12/",
|
4 |
+
"max_length": 512,
|
5 |
+
"pooling_strategy": "CLS_TOKEN",
|
6 |
+
"evidence_identifier": {
|
7 |
+
"batch_size": 64,
|
8 |
+
"epochs": 3,
|
9 |
+
"patience": 10,
|
10 |
+
"lr": 1e-3,
|
11 |
+
"max_grad_norm": 1.0,
|
12 |
+
"sampling_method": "random",
|
13 |
+
"sampling_ratio": 1.0
|
14 |
+
},
|
15 |
+
"evidence_classifier": {
|
16 |
+
"classes": [ "False", "True" ],
|
17 |
+
"batch_size": 64,
|
18 |
+
"epochs": 3,
|
19 |
+
"patience": 10,
|
20 |
+
"lr": 1e-3,
|
21 |
+
"max_grad_norm": 1.0,
|
22 |
+
"sampling_method": "everything"
|
23 |
+
}
|
24 |
+
}
|
25 |
+
|
26 |
+
|
BERT/BERT_params/boolq_bert.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_length": 512,
|
3 |
+
"bert_vocab": "bert-base-uncased",
|
4 |
+
"bert_dir": "bert-base-uncased",
|
5 |
+
"use_evidence_sentence_identifier": 1,
|
6 |
+
"use_evidence_token_identifier": 0,
|
7 |
+
"evidence_identifier": {
|
8 |
+
"batch_size": 10,
|
9 |
+
"epochs": 10,
|
10 |
+
"patience": 10,
|
11 |
+
"warmup_steps": 50,
|
12 |
+
"lr": 1e-05,
|
13 |
+
"max_grad_norm": 1,
|
14 |
+
"sampling_method": "random",
|
15 |
+
"sampling_ratio": 1,
|
16 |
+
"use_half_precision": 0
|
17 |
+
},
|
18 |
+
"evidence_classifier": {
|
19 |
+
"classes": [
|
20 |
+
"False",
|
21 |
+
"True"
|
22 |
+
],
|
23 |
+
"batch_size": 10,
|
24 |
+
"warmup_steps": 50,
|
25 |
+
"epochs": 10,
|
26 |
+
"patience": 10,
|
27 |
+
"lr": 1e-05,
|
28 |
+
"max_grad_norm": 1,
|
29 |
+
"sampling_method": "everything",
|
30 |
+
"use_half_precision": 0
|
31 |
+
}
|
32 |
+
}
|
BERT/BERT_params/boolq_soft.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embeddings": {
|
3 |
+
"embedding_file": "model_components/glove.6B.200d.txt",
|
4 |
+
"dropout": 0.2
|
5 |
+
},
|
6 |
+
"classifier": {
|
7 |
+
"classes": [ "False", "True" ],
|
8 |
+
"has_query": 1,
|
9 |
+
"hidden_size": 32,
|
10 |
+
"mlp_size": 128,
|
11 |
+
"dropout": 0.2,
|
12 |
+
"batch_size": 16,
|
13 |
+
"epochs": 50,
|
14 |
+
"attention_epochs": 50,
|
15 |
+
"patience": 10,
|
16 |
+
"lr": 1e-3,
|
17 |
+
"dropout": 0.2,
|
18 |
+
"k_fraction": 0.07,
|
19 |
+
"threshold": 0.1
|
20 |
+
}
|
21 |
+
}
|
BERT/BERT_params/cose_bert.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_length": 512,
|
3 |
+
"bert_vocab": "bert-base-uncased",
|
4 |
+
"bert_dir": "bert-base-uncased",
|
5 |
+
"use_evidence_sentence_identifier": 0,
|
6 |
+
"use_evidence_token_identifier": 1,
|
7 |
+
"evidence_token_identifier": {
|
8 |
+
"batch_size": 32,
|
9 |
+
"epochs": 10,
|
10 |
+
"patience": 10,
|
11 |
+
"warmup_steps": 10,
|
12 |
+
"lr": 1e-05,
|
13 |
+
"max_grad_norm": 0.5,
|
14 |
+
"sampling_method": "everything",
|
15 |
+
"use_half_precision": 0,
|
16 |
+
"cose_data_hack": 1
|
17 |
+
},
|
18 |
+
"evidence_classifier": {
|
19 |
+
"classes": [ "false", "true"],
|
20 |
+
"batch_size": 32,
|
21 |
+
"warmup_steps": 10,
|
22 |
+
"epochs": 10,
|
23 |
+
"patience": 10,
|
24 |
+
"lr": 1e-05,
|
25 |
+
"max_grad_norm": 0.5,
|
26 |
+
"sampling_method": "everything",
|
27 |
+
"use_half_precision": 0,
|
28 |
+
"cose_data_hack": 1
|
29 |
+
}
|
30 |
+
}
|
BERT/BERT_params/cose_multiclass.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_length": 512,
|
3 |
+
"bert_vocab": "bert-base-uncased",
|
4 |
+
"bert_dir": "bert-base-uncased",
|
5 |
+
"use_evidence_sentence_identifier": 1,
|
6 |
+
"use_evidence_token_identifier": 0,
|
7 |
+
"evidence_identifier": {
|
8 |
+
"batch_size": 32,
|
9 |
+
"epochs": 10,
|
10 |
+
"patience": 10,
|
11 |
+
"warmup_steps": 50,
|
12 |
+
"lr": 1e-05,
|
13 |
+
"max_grad_norm": 1,
|
14 |
+
"sampling_method": "random",
|
15 |
+
"sampling_ratio": 1,
|
16 |
+
"use_half_precision": 0
|
17 |
+
},
|
18 |
+
"evidence_classifier": {
|
19 |
+
"classes": [
|
20 |
+
"A",
|
21 |
+
"B",
|
22 |
+
"C",
|
23 |
+
"D",
|
24 |
+
"E"
|
25 |
+
],
|
26 |
+
"batch_size": 10,
|
27 |
+
"warmup_steps": 50,
|
28 |
+
"epochs": 10,
|
29 |
+
"patience": 10,
|
30 |
+
"lr": 1e-05,
|
31 |
+
"max_grad_norm": 1,
|
32 |
+
"sampling_method": "everything",
|
33 |
+
"use_half_precision": 0
|
34 |
+
}
|
35 |
+
}
|
BERT/BERT_params/esnli_bert.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_length": 512,
|
3 |
+
"bert_vocab": "bert-base-uncased",
|
4 |
+
"bert_dir": "bert-base-uncased",
|
5 |
+
"use_evidence_sentence_identifier": 0,
|
6 |
+
"use_evidence_token_identifier": 1,
|
7 |
+
"evidence_token_identifier": {
|
8 |
+
"batch_size": 32,
|
9 |
+
"epochs": 10,
|
10 |
+
"patience": 10,
|
11 |
+
"warmup_steps": 10,
|
12 |
+
"lr": 1e-05,
|
13 |
+
"max_grad_norm": 1,
|
14 |
+
"sampling_method": "everything",
|
15 |
+
"use_half_precision": 0
|
16 |
+
},
|
17 |
+
"evidence_classifier": {
|
18 |
+
"classes": [ "contradiction", "neutral", "entailment" ],
|
19 |
+
"batch_size": 32,
|
20 |
+
"warmup_steps": 10,
|
21 |
+
"epochs": 10,
|
22 |
+
"patience": 10,
|
23 |
+
"lr": 1e-05,
|
24 |
+
"max_grad_norm": 1,
|
25 |
+
"sampling_method": "everything",
|
26 |
+
"use_half_precision": 0
|
27 |
+
}
|
28 |
+
}
|
BERT/BERT_params/evidence_inference.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embeddings": {
|
3 |
+
"embedding_file": "model_components/PubMed-w2v.bin",
|
4 |
+
"dropout": 0.05
|
5 |
+
},
|
6 |
+
"evidence_identifier": {
|
7 |
+
"mlp_size": 128,
|
8 |
+
"dropout": 0.05,
|
9 |
+
"batch_size": 768,
|
10 |
+
"epochs": 50,
|
11 |
+
"patience": 10,
|
12 |
+
"lr": 1e-3,
|
13 |
+
"sampling_method": "random",
|
14 |
+
"sampling_ratio": 1.0
|
15 |
+
},
|
16 |
+
"evidence_classifier": {
|
17 |
+
"classes": [ "significantly decreased", "no significant difference", "significantly increased" ],
|
18 |
+
"mlp_size": 128,
|
19 |
+
"dropout": 0.05,
|
20 |
+
"batch_size": 768,
|
21 |
+
"epochs": 50,
|
22 |
+
"patience": 10,
|
23 |
+
"lr": 1e-3,
|
24 |
+
"sampling_method": "everything"
|
25 |
+
}
|
26 |
+
}
|
BERT/BERT_params/evidence_inference_bert.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_length": 512,
|
3 |
+
"bert_vocab": "allenai/scibert_scivocab_uncased",
|
4 |
+
"bert_dir": "allenai/scibert_scivocab_uncased",
|
5 |
+
"use_evidence_sentence_identifier": 1,
|
6 |
+
"use_evidence_token_identifier": 0,
|
7 |
+
"evidence_identifier": {
|
8 |
+
"batch_size": 10,
|
9 |
+
"epochs": 10,
|
10 |
+
"patience": 10,
|
11 |
+
"warmup_steps": 10,
|
12 |
+
"lr": 1e-05,
|
13 |
+
"max_grad_norm": 1,
|
14 |
+
"sampling_method": "random",
|
15 |
+
"use_half_precision": 0,
|
16 |
+
"sampling_ratio": 1
|
17 |
+
},
|
18 |
+
"evidence_classifier": {
|
19 |
+
"classes": [
|
20 |
+
"significantly decreased",
|
21 |
+
"no significant difference",
|
22 |
+
"significantly increased"
|
23 |
+
],
|
24 |
+
"batch_size": 10,
|
25 |
+
"warmup_steps": 10,
|
26 |
+
"epochs": 10,
|
27 |
+
"patience": 10,
|
28 |
+
"lr": 1e-05,
|
29 |
+
"max_grad_norm": 1,
|
30 |
+
"sampling_method": "everything",
|
31 |
+
"use_half_precision": 0
|
32 |
+
}
|
33 |
+
}
|
BERT/BERT_params/evidence_inference_soft.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embeddings": {
|
3 |
+
"embedding_file": "model_components/PubMed-w2v.bin",
|
4 |
+
"dropout": 0.2
|
5 |
+
},
|
6 |
+
"classifier": {
|
7 |
+
"classes": [ "significantly decreased", "no significant difference", "significantly increased" ],
|
8 |
+
"use_token_selection": 1,
|
9 |
+
"has_query": 1,
|
10 |
+
"hidden_size": 32,
|
11 |
+
"mlp_size": 128,
|
12 |
+
"dropout": 0.2,
|
13 |
+
"batch_size": 16,
|
14 |
+
"epochs": 50,
|
15 |
+
"attention_epochs": 0,
|
16 |
+
"patience": 10,
|
17 |
+
"lr": 1e-3,
|
18 |
+
"dropout": 0.2,
|
19 |
+
"k_fraction": 0.013,
|
20 |
+
"threshold": 0.1
|
21 |
+
}
|
22 |
+
}
|
BERT/BERT_params/fever.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embeddings": {
|
3 |
+
"embedding_file": "model_components/glove.6B.200d.txt",
|
4 |
+
"dropout": 0.05
|
5 |
+
},
|
6 |
+
"evidence_identifier": {
|
7 |
+
"mlp_size": 128,
|
8 |
+
"dropout": 0.05,
|
9 |
+
"batch_size": 768,
|
10 |
+
"epochs": 50,
|
11 |
+
"patience": 10,
|
12 |
+
"lr": 1e-3,
|
13 |
+
"sampling_method": "random",
|
14 |
+
"sampling_ratio": 1.0
|
15 |
+
},
|
16 |
+
"evidence_classifier": {
|
17 |
+
"classes": [ "SUPPORTS", "REFUTES" ],
|
18 |
+
"mlp_size": 128,
|
19 |
+
"dropout": 0.05,
|
20 |
+
"batch_size": 768,
|
21 |
+
"epochs": 50,
|
22 |
+
"patience": 10,
|
23 |
+
"lr": 1e-5,
|
24 |
+
"sampling_method": "everything"
|
25 |
+
}
|
26 |
+
}
|
BERT/BERT_params/fever_baas.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"start_server": 0,
|
3 |
+
"bert_dir": "model_components/uncased_L-12_H-768_A-12/",
|
4 |
+
"max_length": 512,
|
5 |
+
"pooling_strategy": "CLS_TOKEN",
|
6 |
+
"evidence_identifier": {
|
7 |
+
"batch_size": 64,
|
8 |
+
"epochs": 3,
|
9 |
+
"patience": 10,
|
10 |
+
"lr": 1e-3,
|
11 |
+
"max_grad_norm": 1.0,
|
12 |
+
"sampling_method": "random",
|
13 |
+
"sampling_ratio": 1.0
|
14 |
+
},
|
15 |
+
"evidence_classifier": {
|
16 |
+
"classes": [ "SUPPORTS", "REFUTES" ],
|
17 |
+
"batch_size": 64,
|
18 |
+
"epochs": 3,
|
19 |
+
"patience": 10,
|
20 |
+
"lr": 1e-3,
|
21 |
+
"max_grad_norm": 1.0,
|
22 |
+
"sampling_method": "everything"
|
23 |
+
}
|
24 |
+
}
|
25 |
+
|
BERT/BERT_params/fever_bert.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_length": 512,
|
3 |
+
"bert_vocab": "bert-base-uncased",
|
4 |
+
"bert_dir": "bert-base-uncased",
|
5 |
+
"use_evidence_sentence_identifier": 1,
|
6 |
+
"use_evidence_token_identifier": 0,
|
7 |
+
"evidence_identifier": {
|
8 |
+
"batch_size": 16,
|
9 |
+
"epochs": 10,
|
10 |
+
"patience": 10,
|
11 |
+
"warmup_steps": 10,
|
12 |
+
"lr": 1e-05,
|
13 |
+
"max_grad_norm": 1.0,
|
14 |
+
"sampling_method": "random",
|
15 |
+
"sampling_ratio": 1.0,
|
16 |
+
"use_half_precision": 0
|
17 |
+
},
|
18 |
+
"evidence_classifier": {
|
19 |
+
"classes": [
|
20 |
+
"SUPPORTS",
|
21 |
+
"REFUTES"
|
22 |
+
],
|
23 |
+
"batch_size": 10,
|
24 |
+
"warmup_steps": 10,
|
25 |
+
"epochs": 10,
|
26 |
+
"patience": 10,
|
27 |
+
"lr": 1e-05,
|
28 |
+
"max_grad_norm": 1.0,
|
29 |
+
"sampling_method": "everything",
|
30 |
+
"use_half_precision": 0
|
31 |
+
}
|
32 |
+
}
|
BERT/BERT_params/fever_soft.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embeddings": {
|
3 |
+
"embedding_file": "model_components/glove.6B.200d.txt",
|
4 |
+
"dropout": 0.2
|
5 |
+
},
|
6 |
+
"classifier": {
|
7 |
+
"classes": [ "SUPPORTS", "REFUTES" ],
|
8 |
+
"has_query": 1,
|
9 |
+
"hidden_size": 32,
|
10 |
+
"mlp_size": 128,
|
11 |
+
"dropout": 0.2,
|
12 |
+
"batch_size": 128,
|
13 |
+
"epochs": 50,
|
14 |
+
"attention_epochs": 50,
|
15 |
+
"patience": 10,
|
16 |
+
"lr": 1e-3,
|
17 |
+
"dropout": 0.2,
|
18 |
+
"k_fraction": 0.07,
|
19 |
+
"threshold": 0.1
|
20 |
+
}
|
21 |
+
}
|
BERT/BERT_params/movies.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embeddings": {
|
3 |
+
"embedding_file": "model_components/glove.6B.200d.txt",
|
4 |
+
"dropout": 0.05
|
5 |
+
},
|
6 |
+
"evidence_identifier": {
|
7 |
+
"mlp_size": 128,
|
8 |
+
"dropout": 0.05,
|
9 |
+
"batch_size": 768,
|
10 |
+
"epochs": 50,
|
11 |
+
"patience": 10,
|
12 |
+
"lr": 1e-4,
|
13 |
+
"sampling_method": "random",
|
14 |
+
"sampling_ratio": 1.0
|
15 |
+
},
|
16 |
+
"evidence_classifier": {
|
17 |
+
"classes": [ "NEG", "POS" ],
|
18 |
+
"mlp_size": 128,
|
19 |
+
"dropout": 0.05,
|
20 |
+
"batch_size": 768,
|
21 |
+
"epochs": 50,
|
22 |
+
"patience": 10,
|
23 |
+
"lr": 1e-3,
|
24 |
+
"sampling_method": "everything"
|
25 |
+
}
|
26 |
+
}
|
BERT/BERT_params/movies_baas.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"start_server": 0,
|
3 |
+
"bert_dir": "model_components/uncased_L-12_H-768_A-12/",
|
4 |
+
"max_length": 512,
|
5 |
+
"pooling_strategy": "CLS_TOKEN",
|
6 |
+
"evidence_identifier": {
|
7 |
+
"batch_size": 64,
|
8 |
+
"epochs": 3,
|
9 |
+
"patience": 10,
|
10 |
+
"lr": 1e-3,
|
11 |
+
"max_grad_norm": 1.0,
|
12 |
+
"sampling_method": "random",
|
13 |
+
"sampling_ratio": 1.0
|
14 |
+
},
|
15 |
+
"evidence_classifier": {
|
16 |
+
"classes": [ "NEG", "POS" ],
|
17 |
+
"batch_size": 64,
|
18 |
+
"epochs": 3,
|
19 |
+
"patience": 10,
|
20 |
+
"lr": 1e-3,
|
21 |
+
"max_grad_norm": 1.0,
|
22 |
+
"sampling_method": "everything"
|
23 |
+
}
|
24 |
+
}
|
25 |
+
|
26 |
+
|
BERT/BERT_params/movies_bert.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_length": 512,
|
3 |
+
"bert_vocab": "bert-base-uncased",
|
4 |
+
"bert_dir": "bert-base-uncased",
|
5 |
+
"use_evidence_sentence_identifier": 1,
|
6 |
+
"use_evidence_token_identifier": 0,
|
7 |
+
"evidence_identifier": {
|
8 |
+
"batch_size": 16,
|
9 |
+
"epochs": 10,
|
10 |
+
"patience": 10,
|
11 |
+
"warmup_steps": 50,
|
12 |
+
"lr": 1e-05,
|
13 |
+
"max_grad_norm": 1,
|
14 |
+
"sampling_method": "random",
|
15 |
+
"sampling_ratio": 1,
|
16 |
+
"use_half_precision": 0
|
17 |
+
},
|
18 |
+
"evidence_classifier": {
|
19 |
+
"classes": [
|
20 |
+
"NEG",
|
21 |
+
"POS"
|
22 |
+
],
|
23 |
+
"batch_size": 10,
|
24 |
+
"warmup_steps": 50,
|
25 |
+
"epochs": 10,
|
26 |
+
"patience": 10,
|
27 |
+
"lr": 1e-05,
|
28 |
+
"max_grad_norm": 1,
|
29 |
+
"sampling_method": "everything",
|
30 |
+
"use_half_precision": 0
|
31 |
+
}
|
32 |
+
}
|
BERT/BERT_params/movies_soft.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embeddings": {
|
3 |
+
"embedding_file": "model_components/glove.6B.200d.txt",
|
4 |
+
"dropout": 0.2
|
5 |
+
},
|
6 |
+
"classifier": {
|
7 |
+
"classes": [ "NEG", "POS" ],
|
8 |
+
"has_query": 0,
|
9 |
+
"hidden_size": 32,
|
10 |
+
"mlp_size": 128,
|
11 |
+
"dropout": 0.2,
|
12 |
+
"batch_size": 16,
|
13 |
+
"epochs": 50,
|
14 |
+
"attention_epochs": 50,
|
15 |
+
"patience": 10,
|
16 |
+
"lr": 1e-3,
|
17 |
+
"dropout": 0.2,
|
18 |
+
"k_fraction": 0.07,
|
19 |
+
"threshold": 0.1
|
20 |
+
}
|
21 |
+
}
|
BERT/BERT_params/multirc.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embeddings": {
|
3 |
+
"embedding_file": "model_components/glove.6B.200d.txt",
|
4 |
+
"dropout": 0.05
|
5 |
+
},
|
6 |
+
"evidence_identifier": {
|
7 |
+
"mlp_size": 128,
|
8 |
+
"dropout": 0.05,
|
9 |
+
"batch_size": 768,
|
10 |
+
"epochs": 50,
|
11 |
+
"patience": 10,
|
12 |
+
"lr": 1e-3,
|
13 |
+
"sampling_method": "random",
|
14 |
+
"sampling_ratio": 1.0
|
15 |
+
},
|
16 |
+
"evidence_classifier": {
|
17 |
+
"classes": [ "False", "True" ],
|
18 |
+
"mlp_size": 128,
|
19 |
+
"dropout": 0.05,
|
20 |
+
"batch_size": 768,
|
21 |
+
"epochs": 50,
|
22 |
+
"patience": 10,
|
23 |
+
"lr": 1e-3,
|
24 |
+
"sampling_method": "everything"
|
25 |
+
}
|
26 |
+
}
|
BERT/BERT_params/multirc_baas.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"start_server": 0,
|
3 |
+
"bert_dir": "model_components/uncased_L-12_H-768_A-12/",
|
4 |
+
"max_length": 512,
|
5 |
+
"pooling_strategy": "CLS_TOKEN",
|
6 |
+
"evidence_identifier": {
|
7 |
+
"batch_size": 64,
|
8 |
+
"epochs": 3,
|
9 |
+
"patience": 10,
|
10 |
+
"lr": 1e-3,
|
11 |
+
"max_grad_norm": 1.0,
|
12 |
+
"sampling_method": "random",
|
13 |
+
"sampling_ratio": 1.0
|
14 |
+
},
|
15 |
+
"evidence_classifier": {
|
16 |
+
"classes": [ "False", "True" ],
|
17 |
+
"batch_size": 64,
|
18 |
+
"epochs": 3,
|
19 |
+
"patience": 10,
|
20 |
+
"lr": 1e-3,
|
21 |
+
"max_grad_norm": 1.0,
|
22 |
+
"sampling_method": "everything"
|
23 |
+
}
|
24 |
+
}
|
25 |
+
|
26 |
+
|
BERT/BERT_params/multirc_bert.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_length": 512,
|
3 |
+
"bert_vocab": "bert-base-uncased",
|
4 |
+
"bert_dir": "bert-base-uncased",
|
5 |
+
"use_evidence_sentence_identifier": 1,
|
6 |
+
"use_evidence_token_identifier": 0,
|
7 |
+
"evidence_identifier": {
|
8 |
+
"batch_size": 32,
|
9 |
+
"epochs": 10,
|
10 |
+
"patience": 10,
|
11 |
+
"warmup_steps": 50,
|
12 |
+
"lr": 1e-05,
|
13 |
+
"max_grad_norm": 1,
|
14 |
+
"sampling_method": "random",
|
15 |
+
"sampling_ratio": 1,
|
16 |
+
"use_half_precision": 0
|
17 |
+
},
|
18 |
+
"evidence_classifier": {
|
19 |
+
"classes": [
|
20 |
+
"False",
|
21 |
+
"True"
|
22 |
+
],
|
23 |
+
"batch_size": 32,
|
24 |
+
"warmup_steps": 50,
|
25 |
+
"epochs": 10,
|
26 |
+
"patience": 10,
|
27 |
+
"lr": 1e-05,
|
28 |
+
"max_grad_norm": 1,
|
29 |
+
"sampling_method": "everything",
|
30 |
+
"use_half_precision": 0
|
31 |
+
}
|
32 |
+
}
|
BERT/BERT_params/multirc_soft.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embeddings": {
|
3 |
+
"embedding_file": "model_components/glove.6B.200d.txt",
|
4 |
+
"dropout": 0.2
|
5 |
+
},
|
6 |
+
"classifier": {
|
7 |
+
"classes": [ "False", "True" ],
|
8 |
+
"has_query": 1,
|
9 |
+
"hidden_size": 32,
|
10 |
+
"mlp_size": 128,
|
11 |
+
"dropout": 0.2,
|
12 |
+
"batch_size": 16,
|
13 |
+
"epochs": 50,
|
14 |
+
"attention_epochs": 50,
|
15 |
+
"patience": 10,
|
16 |
+
"lr": 1e-3,
|
17 |
+
"dropout": 0.2,
|
18 |
+
"k_fraction": 0.07,
|
19 |
+
"threshold": 0.1
|
20 |
+
}
|
21 |
+
}
|
BERT/BERT_rationale_benchmark/__init__.py
ADDED
File without changes
|