WickedFaith's picture
Update src/frontend/app.py
8d54eba verified
raw
history blame contribute delete
72 kB
import streamlit as st
import requests
import pandas as pd
import json
import plotly.express as px
import traceback
import threading
import time
import subprocess
# Fix imports to use relative paths or sys.path modification
import sys
import os
import numpy as np
import pickle
import plotly.graph_objects as go
from datetime import datetime
import joblib
st.set_page_config(
page_title="AI Prediction Dashboard",
page_icon="🎯",
layout="wide",
initial_sidebar_state="expanded"
)
# Function to start the API server
def run_api():
try:
# For Hugging Face Spaces, set environment variable
os.environ['SPACE_ID'] = 'huggingface'
# Start the API server
process = subprocess.Popen(
["python", "-m", "uvicorn", "src.api.main:app", "--host", "0.0.0.0", "--port", "8000"],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
)
# Log any errors
for line in process.stderr:
print(f"API Error: {line.strip()}")
except Exception as e:
print(f"Error starting API: {e}")
# Only start the server once after page config is set
if "api_started" not in st.session_state:
threading.Thread(target=run_api).start()
st.session_state.api_started = True
# Wait a few seconds for server to start
time.sleep(5)
# Add the project root to the Python path
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '../..')))
# Import the prediction interfaces
from loan_prediction import show_loan_prediction
from src.frontend.attrition_prediction import show_attrition_prediction
# Now import the modules
try:
from src.utils.chatbot import ExplainableChatbot
from src.explainers.bias_detector import BiasDetector
from src.utils.report_generator import ReportGenerator
except ImportError as e:
# Create dummy classes for development/testing
class ExplainableChatbot:
def __init__(self):
pass
def get_response(self, question, context=None):
return f"This is a placeholder response for: {question}"
class BiasDetector:
def __init__(self, model=None, sensitive_features=None):
self.sensitive_features = sensitive_features or []
class ReportGenerator:
def generate_loan_report(self, output_path, data, **kwargs):
# Create a simple text file as placeholder
with open(output_path, 'w') as f:
f.write("Sample Report\n\n")
f.write(str(data))
return True
import tempfile
# Custom CSS to fix text alignment in status boxes and add progress bars
st.markdown("""
<style>
.project-title {
text-align: center;
background: linear-gradient(120deg, #4c78a8, #2c3153);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
font-size: 4rem;
font-weight: 800;
margin: -1rem auto 1rem auto;
padding: 1rem;
letter-spacing: 2px;
text-transform: uppercase;
font-family: 'Helvetica Neue', sans-serif;
display: block;
}
.stApp {
overflow: auto;
height: 100vh;
}
.main .block-container {
max-width: 100%;
padding: 2rem;
overflow-x: hidden;
}
[data-testid="stSidebar"] .block-container {
overflow-x: hidden;
}
.status-box {
display: inline-block;
padding: 6px 0px;
border-radius: 4px;
text-align: center;
font-weight: bold;
width: 100%;
white-space: nowrap;
font-size: 14px;
}
.status-good {
background-color: #0e5814;
color: white;
}
.status-ok {
background-color: #9c6a00;
color: white;
}
.status-bad {
background-color: #8b0000;
color: white;
}
.metric-label {
font-size: 18px;
font-weight: bold;
margin-bottom: 5px;
}
.metric-value {
font-size: 28px;
font-weight: bold;
}
.metric-desc {
font-size: 14px;
color: #ccc;
margin-top: 5px;
}
.progress-container {
width: 100%;
background-color: #333;
border-radius: 5px;
margin-top: 10px;
}
.progress-bar {
height: 10px;
border-radius: 5px;
}
.progress-good {
background-color: #0e5814;
}
.progress-ok {
background-color: #9c6a00;
}
.progress-bad {
background-color: #8b0000;
}
.model-card {
padding: 20px;
border-radius: 10px;
background-color: #1e2130;
border: 1px solid #2c3153;
margin: 10px 0;
transition: transform 0.3s;
height: 100%;
display: flex;
flex-direction: column;
justify-content: space-between;
}
.model-card:hover {
transform: translateY(-5px);
border-color: #4c78a8;
cursor: pointer;
}
.model-title {
font-size: 24px;
font-weight: bold;
margin-bottom: 10px;
text-align: center;
color: #ffffff;
}
.model-description {
font-size: 16px;
color: #ccc;
margin: 15px 0;
text-align: center;
}
.centered-content {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
text-align: center;
}
.healthcare-card {
padding: 20px;
border-radius: 10px;
background-color: #1e2130;
border: 1px solid #2c3153;
margin: 10px 0;
transition: transform 0.3s;
height: 400px; /* Fixed height for both cards */
display: flex;
flex-direction: column;
justify-content: space-between;
}
.healthcare-card:hover {
transform: translateY(-5px);
border-color: #4c78a8;
cursor: pointer;
}
.healthcare-description {
font-size: 16px;
color: #ccc;
margin: 15px 0;
text-align: center;
flex-grow: 1; /* Allow description to take available space */
}
.healthcare-icon {
display: flex;
justify-content: center;
align-items: center;
margin: 20px 0;
}
.main {
padding: 2rem;
}
.stButton>button {
width: 100%;
height: 3rem;
font-size: 1.2rem;
margin-top: 1rem;
}
.prediction-box {
padding: 2rem;
border-radius: 10px;
margin: 1rem 0;
}
.high-risk {
background-color: #ffebee;
border: 2px solid #f44336;
}
.low-risk {
background-color: #e8f5e9;
border: 2px solid #4caf50;
}
</style>
""", unsafe_allow_html=True)
# Function to create status box
def status_box(status, text):
if status == "good":
return f'<div class="status-box status-good">{text}</div>'
elif status == "ok":
return f'<div class="status-box status-ok">{text}</div>'
else:
return f'<div class="status-box status-bad">{text}</div>'
# Function to create a metric with progress bar
def metric_with_progress(label, value, description, status, progress_percent):
progress_class = "progress-good" if status == "good" else "progress-ok" if status == "ok" else "progress-bad"
return f"""
<div class="metric-label">{label}</div>
<div class="metric-value">{value}</div>
<div class="metric-desc">{description}</div>
<div class="progress-container">
<div class="progress-bar {progress_class}" style="width: {progress_percent}%"></div>
</div>
"""
# API endpoint
API_URL = "http://127.0.0.1:8000"
def show_dashboard():
st.markdown('<div class="project-title">Intuitron</div>', unsafe_allow_html=True)
st.markdown("## AI Prediction Dashboard")
st.markdown("### Select a Prediction Model")
# Create three columns for the model cards
col1, col2, col3 = st.columns(3)
with col1:
st.markdown("""
<div class="model-card">
<div class="model-title">🏦 Loan Approval</div>
<div class="model-description">
Predict loan approval probability based on financial and personal information.
Features include credit score, income, assets, and more.
</div>
<div class="centered-content">
<img src="https://img.icons8.com/fluency/96/000000/bank-building.png" style="margin: 20px 0;">
</div>
</div>
""", unsafe_allow_html=True)
if st.button("Launch Loan Predictor"):
st.session_state.selected_model = "loan"
st.experimental_rerun()
with col2:
st.markdown("""
<div class="model-card">
<div class="model-title">πŸ‘₯ Employee Attrition</div>
<div class="model-description">
Predict employee attrition risk using HR analytics data.
Analyze factors like job satisfaction, salary, and work-life balance.
</div>
<div class="centered-content">
<img src="https://img.icons8.com/fluency/96/000000/employee-card.png" style="margin: 20px 0;">
</div>
</div>
""", unsafe_allow_html=True)
if st.button("Launch Attrition Predictor"):
st.session_state.selected_model = "attrition"
st.experimental_rerun()
with col3:
st.markdown("""
<div class="model-card">
<div class="model-title">πŸ₯ Healthcare</div>
<div class="model-description">
Predict healthcare outcomes and risk factors. Analyze patient data for better healthcare decisions.
Includes diabetes and liver disease prediction models.
</div>
<div class="centered-content">
<img src="https://img.icons8.com/fluency/96/000000/hospital.png" style="margin: 20px 0;">
</div>
</div>
""", unsafe_allow_html=True)
if st.button("Launch Healthcare Predictor"):
st.session_state.selected_model = "healthcare"
st.experimental_rerun()
def get_loan_explanation(data, result):
"""Generate personalized explanation for loan prediction"""
explanation = []
# Credit Score Analysis
if data['cibil_score'] >= 750:
explanation.append("β€’ **Credit Score**: Excellent credit score (750+) significantly improves your loan approval chances.")
elif data['cibil_score'] >= 650:
explanation.append("β€’ **Credit Score**: Good credit score (650-749) supports your application.")
else:
explanation.append("β€’ **Credit Score**: Your credit score is below 650, which may affect loan approval.")
# Income and Loan Amount Analysis
monthly_income = data['income_annum'] / 12
loan_term_months = data['loan_term'] * 12
# Assuming 8% annual interest rate for EMI calculation
r = 0.08 / 12
emi = (data['loan_amount'] * r * (1 + r)**loan_term_months) / ((1 + r)**loan_term_months - 1)
dti_ratio = (emi / monthly_income) * 100
if dti_ratio <= 40:
explanation.append(f"β€’ **Affordability**: Your EMI would be β‚Ή{emi:,.2f}, which is {dti_ratio:.1f}% of monthly income - this is within acceptable limits.")
else:
explanation.append(f"β€’ **Affordability**: Your EMI would be β‚Ή{emi:,.2f}, which is {dti_ratio:.1f}% of monthly income - this may be too high.")
# Assets Analysis
total_assets = (data['residential_assets_value'] + data['commercial_assets_value'] +
data['luxury_assets_value'] + data['bank_asset_value'])
asset_ratio = total_assets / data['loan_amount']
if asset_ratio >= 2:
explanation.append(f"β€’ **Asset Coverage**: Your total assets (β‚Ή{total_assets:,.2f}) provide excellent security, covering {asset_ratio:.1f}x the loan amount.")
elif asset_ratio >= 1:
explanation.append(f"β€’ **Asset Coverage**: Your assets provide adequate security, covering {asset_ratio:.1f}x the loan amount.")
else:
explanation.append(f"β€’ **Asset Coverage**: Your assets cover only {asset_ratio:.1f}x the loan amount, which may be insufficient.")
# Employment and Education
if data['education'] == "Graduate":
explanation.append("β€’ **Education**: Being a graduate strengthens your application.")
else:
explanation.append("β€’ **Education**: Higher education could improve future loan eligibility.")
if data['self_employed'] == "Yes":
explanation.append("β€’ **Employment**: Being self-employed may require additional income documentation.")
else:
explanation.append("β€’ **Employment**: Salaried employment provides stable income assessment.")
# Overall Assessment
if result["prediction"]:
explanation.append("\n### Key Approval Factors:")
strengths = []
if data['cibil_score'] >= 650:
strengths.append("Strong credit history")
if dti_ratio <= 40:
strengths.append("Good affordability ratio")
if asset_ratio >= 1.5:
strengths.append("Strong asset coverage")
if data['education'] == "Graduate":
strengths.append("Higher education")
explanation.append("β€’ " + ", ".join(strengths))
else:
explanation.append("\n### Areas for Improvement:")
if data['cibil_score'] < 650:
explanation.append("1. Work on improving credit score")
if dti_ratio > 40:
explanation.append("2. Consider a lower loan amount or longer tenure")
if asset_ratio < 1.5:
explanation.append("3. Strengthen asset position")
if data['education'] != "Graduate":
explanation.append("4. Consider additional qualification")
return "\n".join(explanation)
# Load the trained model and components
@st.cache_resource
def load_model():
try:
model_path = os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(__file__))), 'models', 'loan_model.joblib')
if not os.path.exists(model_path):
st.error("Model file not found. Please train the model first.")
return None
model_data = joblib.load(model_path)
return model_data
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return None
def show_loan_prediction():
st.title("Loan Approval Prediction System")
# Create sidebar for inputs
with st.sidebar:
st.header("Loan Application Details")
# Personal information
st.subheader("Personal Information")
no_of_dependents = st.slider("Number of Dependents", 0, 10, 2)
education = st.selectbox("Education", ["Graduate", "Not Graduate"])
self_employed = st.selectbox("Self Employed", ["Yes", "No"])
# Financial information
st.subheader("Financial Information")
income_annum = st.number_input("Annual Income (β‚Ή)", min_value=100000, max_value=20000000, value=5000000, step=100000)
loan_amount = st.number_input("Loan Amount (β‚Ή)", min_value=100000, max_value=50000000, value=10000000, step=100000)
loan_term = st.slider("Loan Term (years)", 2, 30, 15)
cibil_score = st.slider("CIBIL Score", 300, 900, 650)
# Assets information
st.subheader("Assets Information")
residential_assets_value = st.number_input("Residential Assets Value (β‚Ή)", min_value=0, max_value=50000000, value=5000000, step=100000)
commercial_assets_value = st.number_input("Commercial Assets Value (β‚Ή)", min_value=0, max_value=50000000, value=2000000, step=100000)
luxury_assets_value = st.number_input("Luxury Assets Value (β‚Ή)", min_value=0, max_value=50000000, value=1000000, step=100000)
bank_asset_value = st.number_input("Bank Assets Value (β‚Ή)", min_value=0, max_value=50000000, value=3000000, step=100000)
# Submit button
predict_button = st.button("Predict Loan Approval")
# Main content area
if predict_button:
# Prepare input data
input_data = {
"no_of_dependents": no_of_dependents,
"education": education,
"self_employed": self_employed,
"income_annum": income_annum,
"loan_amount": loan_amount,
"loan_term": loan_term,
"cibil_score": cibil_score,
"residential_assets_value": residential_assets_value,
"commercial_assets_value": commercial_assets_value,
"luxury_assets_value": luxury_assets_value,
"bank_asset_value": bank_asset_value
}
try:
# Make API request
response = requests.post(
"http://localhost:8000/predict/loan_approval",
json=input_data
)
response.raise_for_status()
result = response.json()
# Display results
col1, col2 = st.columns([3, 2])
with col1:
# Prediction result
if result["prediction"] == "Approved":
st.success("### Loan Approved! βœ…")
else:
st.error("### Loan Rejected ❌")
# Explanation section
st.subheader("Explanation")
for explanation in result["explanation"]:
st.write(explanation)
# Factors Affecting Application
st.subheader("Factors Affecting Your Application")
# Create DataFrame for visualization
feature_importance = result["feature_importance"]
importance_df = pd.DataFrame({
'Feature': list(feature_importance.keys()),
'Importance': list(feature_importance.values())
})
importance_df = importance_df.sort_values('Importance', ascending=False)
# Create horizontal bar chart
fig = px.bar(
importance_df,
x='Importance',
y='Feature',
orientation='h',
color='Importance',
color_continuous_scale=px.colors.sequential.Blues
)
fig.update_layout(
margin=dict(l=20, r=20, t=30, b=20),
height=400
)
st.plotly_chart(fig, use_container_width=True)
with col2:
# Approval Probability
st.subheader("Approval Probability")
st.markdown(f"### {result['probability']:.2%}")
# Financial Metrics
st.subheader("Financial Metrics")
metrics = result["financial_metrics"]
metrics_col1, metrics_col2, metrics_col3 = st.columns(3)
with metrics_col1:
st.markdown("**CIBIL Score**")
st.markdown(f"### {cibil_score}")
if cibil_score >= 750:
st.markdown("Excellent - Very favorable")
elif cibil_score >= 650:
st.markdown("Fair - Average credit history")
else:
st.markdown("Poor - Unfavorable credit history")
with metrics_col2:
st.markdown("**Debt-to-Income**")
st.markdown(f"### {metrics['debt_to_income']:.2f}")
if metrics['debt_to_income'] <= 0.3:
st.markdown("Low - Very manageable")
elif metrics['debt_to_income'] <= 0.5:
st.markdown("Medium - Manageable")
else:
st.markdown("High - Significant burden")
with metrics_col3:
st.markdown("**Assets-to-Loan**")
st.markdown(f"### {metrics['asset_to_loan']:.2f}")
if metrics['asset_to_loan'] >= 2:
st.markdown("Strong - Excellent coverage")
elif metrics['asset_to_loan'] >= 1:
st.markdown("Fair - Adequate coverage")
else:
st.markdown("Weak - Limited coverage")
# Monthly Payment Analysis
st.subheader("Monthly Payment Analysis")
st.markdown(f"**Monthly Payment:** β‚Ή{metrics['monthly_payment']:,.2f}")
st.markdown(f"This represents {(metrics['monthly_payment'] / metrics['monthly_income'] * 100):.2f}% of your monthly income (β‚Ή{metrics['monthly_income']:,.2f})")
if metrics['debt_to_income'] <= 0.3:
st.markdown("Excellent - Very affordable payment")
elif metrics['debt_to_income'] <= 0.5:
st.markdown("Good - Manageable payment")
else:
st.markdown("Caution - High payment burden")
# Assets Information
st.subheader("Assets Information")
st.markdown(f"Total Assets: β‚Ή{metrics['total_assets']:,.2f}")
# Create pie chart for asset breakdown
asset_labels = ['Residential', 'Commercial', 'Luxury', 'Bank']
asset_values = [residential_assets_value, commercial_assets_value, luxury_assets_value, bank_asset_value]
fig = px.pie(
values=asset_values,
names=asset_labels,
title='Assets Breakdown'
)
fig.update_layout(margin=dict(l=20, r=20, t=30, b=20))
st.plotly_chart(fig, use_container_width=True)
except requests.exceptions.RequestException as e:
st.error(f"Error making prediction: {str(e)}")
st.error(traceback.format_exc())
st.info("Make sure the FastAPI backend is running with: python -m uvicorn src.api.main:app --reload")
def get_attrition_explanation(data, result):
"""Generate personalized explanation for attrition prediction"""
explanation = []
# Job Level Analysis
if data['job_level'] <= 2:
explanation.append("β€’ **Career Growth**: Being in a junior/mid-level position may present opportunities for advancement. Consider discussing career development paths with your manager.")
else:
explanation.append("β€’ **Senior Position**: Your senior position indicates strong career progression, which typically correlates with lower attrition.")
# Satisfaction Analysis
if data['job_satisfaction'] < 3:
explanation.append("β€’ **Job Satisfaction**: Your job satisfaction score indicates room for improvement. Consider discussing any concerns with your supervisor.")
else:
explanation.append("β€’ **Job Satisfaction**: Your high job satisfaction is a positive indicator for retention.")
if data['work_life_balance'] < 3:
explanation.append("β€’ **Work-Life Balance**: Your work-life balance score suggests potential stress. Consider discussing flexible work arrangements.")
else:
explanation.append("β€’ **Work-Life Balance**: You maintain a healthy work-life balance, which is crucial for long-term retention.")
# Compensation Analysis
expected_income = 3000 * (1 + data['total_working_years'] * 0.1) * data['job_level']
if data['monthly_income'] < expected_income:
explanation.append("β€’ **Compensation**: Your current compensation might be below market rate for your experience level. Consider discussing this during your next review.")
else:
explanation.append("β€’ **Compensation**: Your compensation is competitive for your experience level.")
# Experience and Tenure
if data['years_at_company'] < 2:
explanation.append("β€’ **Tenure**: Being relatively new to the company, it's important to focus on integration and building strong relationships.")
elif data['years_at_company'] > 5:
explanation.append("β€’ **Tenure**: Your long tenure indicates strong company loyalty and established relationships.")
# Overall Risk Assessment
if result["prediction"]:
explanation.append("\n### Risk Mitigation Strategies:")
if data['job_satisfaction'] < 3:
explanation.append("1. Schedule a career development discussion")
if data['work_life_balance'] < 3:
explanation.append("2. Review workload and scheduling")
if data['monthly_income'] < expected_income:
explanation.append("3. Prepare for compensation discussion")
else:
explanation.append("\n### Retention Strengths:")
strengths = []
if data['job_satisfaction'] >= 3:
strengths.append("High job satisfaction")
if data['work_life_balance'] >= 3:
strengths.append("Good work-life balance")
if data['monthly_income'] >= expected_income:
strengths.append("Competitive compensation")
explanation.append("β€’ " + ", ".join(strengths))
return "\n".join(explanation)
def show_attrition_prediction():
st.title("Employee Attrition Prediction")
# Create sidebar for inputs
with st.sidebar:
st.header("Employee Details")
# Personal Information
st.subheader("Personal Information")
age = st.slider("Age", 18, 65, 30)
# Job Information
st.subheader("Job Information")
distance_from_home = st.slider("Distance From Home (km)", 1, 30, 5)
job_level = st.slider("Job Level", 1, 5, 2)
monthly_income = st.number_input("Monthly Income", min_value=1000, max_value=20000, value=5000, step=500)
overtime = st.selectbox("Overtime", ["Yes", "No"])
# Work Experience
st.subheader("Work Experience")
total_working_years = st.slider("Total Working Years", 0, 40, 5)
years_at_company = st.slider("Years at Company", 0, 40, 3)
# Satisfaction Metrics
st.subheader("Satisfaction Metrics")
environment_satisfaction = st.slider("Environment Satisfaction", 1, 4, 3,
help="1=Low, 2=Medium, 3=High, 4=Very High")
job_satisfaction = st.slider("Job Satisfaction", 1, 4, 3,
help="1=Low, 2=Medium, 3=High, 4=Very High")
work_life_balance = st.slider("Work Life Balance", 1, 4, 3,
help="1=Low, 2=Medium, 3=High, 4=Very High")
# Submit button
predict_button = st.button("Predict Attrition Risk")
# Main content area
if predict_button:
# Prepare data for API
data = {
"model_type": "attrition",
"features": {
"Age": age,
"DistanceFromHome": distance_from_home,
"EnvironmentSatisfaction": environment_satisfaction,
"JobLevel": job_level,
"JobSatisfaction": job_satisfaction,
"MonthlyIncome": monthly_income,
"OverTime": overtime,
"TotalWorkingYears": total_working_years,
"WorkLifeBalance": work_life_balance,
"YearsAtCompany": years_at_company
}
}
# Call API
with st.spinner("Predicting..."):
try:
response = requests.post(f"{API_URL}/predict", json=data)
if response.status_code == 200:
result = response.json()
# Display results
col1, col2 = st.columns([3, 2])
with col1:
# Prediction result
if result["prediction"]:
st.error("### High Attrition Risk ⚠️")
st.markdown("This employee may be at risk of leaving.")
else:
st.success("### Low Attrition Risk βœ…")
st.markdown("This employee is likely to stay with the company.")
# Add personalized explanation
st.info("### Personalized Analysis")
explanation_data = {
'job_level': job_level,
'monthly_income': monthly_income,
'job_satisfaction': job_satisfaction,
'work_life_balance': work_life_balance,
'years_at_company': years_at_company,
'total_working_years': total_working_years
}
st.markdown(get_attrition_explanation(explanation_data, result))
# Feature importance visualization
st.subheader("Factors Affecting Attrition Risk")
feature_importance = {
"Monthly Income": 0.20,
"Years at Company": 0.15,
"Job Satisfaction": 0.15,
"Work Life Balance": 0.12,
"Distance From Home": 0.10,
"Environment Satisfaction": 0.10,
"Job Level": 0.08,
"Age": 0.05,
"Total Working Years": 0.03,
"Overtime": 0.02
}
feature_df = pd.DataFrame({
"feature": list(feature_importance.keys()),
"importance": list(feature_importance.values())
})
fig = px.bar(
feature_df,
x="importance",
y="feature",
orientation='h',
title="Impact of Different Factors on Attrition Risk",
labels={"importance": "Impact", "feature": "Factor"},
height=400
)
st.plotly_chart(fig, use_container_width=True)
with col2:
# Add container for better styling
with st.container():
# Probability gauge
st.subheader("Attrition Probability")
attrition_prob = result["probability"]
st.metric(
label="Risk Level",
value=f"{attrition_prob:.1%}"
)
st.markdown("---")
# Employee Profile Summary
st.subheader("Employee Profile")
# Job Metrics
metrics_col1, metrics_col2 = st.columns(2)
with metrics_col1:
# Job Level
level_status = "good" if job_level >= 3 else "ok"
level_desc = "Senior Position" if job_level >= 3 else "Junior/Mid-level Position"
level_percent = (job_level / 5) * 100
st.markdown(
metric_with_progress("Job Level", str(job_level), level_desc, level_status, level_percent),
unsafe_allow_html=True
)
with metrics_col2:
# Years at Company
tenure_status = "good" if years_at_company >= 5 else "ok"
tenure_desc = "Experienced Employee" if years_at_company >= 5 else "Growing Experience"
tenure_percent = min((years_at_company / 10) * 100, 100)
st.markdown(
metric_with_progress("Tenure", f"{years_at_company} years", tenure_desc, tenure_status, tenure_percent),
unsafe_allow_html=True
)
# Satisfaction Metrics
st.markdown("### Satisfaction Levels")
sat_col1, sat_col2 = st.columns(2)
with sat_col1:
# Job Satisfaction
job_sat_status = "good" if job_satisfaction >= 3 else "ok" if job_satisfaction >= 2 else "bad"
job_sat_desc = "High Satisfaction" if job_satisfaction >= 3 else "Moderate Satisfaction" if job_satisfaction >= 2 else "Low Satisfaction"
job_sat_percent = (job_satisfaction / 4) * 100
st.markdown(
metric_with_progress("Job Satisfaction", f"{job_satisfaction}/4", job_sat_desc, job_sat_status, job_sat_percent),
unsafe_allow_html=True
)
with sat_col2:
# Work Life Balance
wlb_status = "good" if work_life_balance >= 3 else "ok" if work_life_balance >= 2 else "bad"
wlb_desc = "Good Balance" if work_life_balance >= 3 else "Moderate Balance" if work_life_balance >= 2 else "Poor Balance"
wlb_percent = (work_life_balance / 4) * 100
st.markdown(
metric_with_progress("Work-Life Balance", f"{work_life_balance}/4", wlb_desc, wlb_status, wlb_percent),
unsafe_allow_html=True
)
# Compensation Analysis
st.markdown("### Compensation Analysis")
# Monthly Income vs Experience
income_per_year = monthly_income * 12
expected_income = 3000 * (1 + total_working_years * 0.1) * job_level # Simple model for expected income
income_ratio = income_per_year / expected_income
income_status = "good" if income_ratio >= 1 else "ok" if income_ratio >= 0.8 else "bad"
income_desc = f"{'Above' if income_ratio >= 1 else 'Near' if income_ratio >= 0.8 else 'Below'} expected for experience level"
income_percent = min(income_ratio * 100, 100)
st.markdown(
metric_with_progress(
"Annual Income",
f"β‚Ή{income_per_year:,.0f}",
income_desc,
income_status,
income_percent
),
unsafe_allow_html=True
)
# If high attrition risk, show recommendations
if result["prediction"]:
st.markdown("### 🚨 Retention Recommendations")
recommendations = []
if monthly_income < 5000:
recommendations.append("Consider a compensation review")
if job_satisfaction < 3:
recommendations.append("Schedule a job satisfaction discussion")
if work_life_balance < 3:
recommendations.append("Review workload and scheduling")
if environment_satisfaction < 3:
recommendations.append("Assess work environment concerns")
if overtime == "Yes":
recommendations.append("Review workload distribution and overtime requirements")
for rec in recommendations:
st.markdown(f"β€’ {rec}")
else:
st.error(f"Error: API returned status code {response.status_code}")
try:
error_detail = response.json()
st.error(f"Error details: {error_detail}")
except:
st.code(response.text)
except Exception as e:
st.error(f"Error connecting to API: {str(e)}")
st.error(traceback.format_exc())
st.info("Make sure the FastAPI backend is running with: python -m uvicorn src.api.main:app --reload")
def show_healthcare_prediction():
st.title("Healthcare Prediction Models")
st.markdown("### Select a healthcare prediction model to get started")
# Create two columns for the prediction options
col1, col2 = st.columns(2)
with col1:
st.markdown("""
<div class="healthcare-card">
<div class="healthcare-icon">
<img src="https://img.icons8.com/color/96/000000/dna-helix.png" style="margin: 20px 0;">
</div>
<div class="model-title">Diabetes Prediction</div>
<div class="healthcare-description">
Assess the risk of diabetes based on health metrics and patient history.
</div>
</div>
""", unsafe_allow_html=True)
if st.button("Select Diabetes Prediction", key="select_diabetes"):
st.session_state.healthcare_model = "diabetes"
st.experimental_rerun()
with col2:
st.markdown("""
<div class="healthcare-card">
<div class="healthcare-icon">
<img src="https://img.icons8.com/color/96/000000/microscope.png" style="margin: 20px 0;">
</div>
<div class="model-title">Liver Disease Prediction</div>
<div class="healthcare-description">
Evaluate liver health and disease risk based on patient data and lab results.
</div>
</div>
""", unsafe_allow_html=True)
if st.button("Select Liver Disease Prediction", key="select_liver"):
st.session_state.healthcare_model = "liver"
st.experimental_rerun()
# Add a back button
if st.button("← Back to Dashboard", key="healthcare_back"):
st.session_state.selected_model = None
st.session_state.healthcare_model = None
st.experimental_rerun()
def get_diabetes_explanation(data, result):
"""Generate personalized explanation for diabetes prediction"""
explanation = []
# Glucose Analysis
if data['glucose'] < 100:
explanation.append("β€’ **Glucose Level**: Your glucose level is within normal range (<100 mg/dL).")
elif data['glucose'] < 126:
explanation.append("β€’ **Glucose Level**: Your glucose level indicates pre-diabetes (100-125 mg/dL). Consider lifestyle modifications.")
else:
explanation.append("β€’ **Glucose Level**: Your glucose level is in the diabetic range (>126 mg/dL). Medical consultation recommended.")
# BMI Analysis
if data['bmi'] < 18.5:
explanation.append("β€’ **BMI**: Your BMI indicates underweight status. Consider nutritional consultation.")
elif data['bmi'] < 25:
explanation.append("β€’ **BMI**: Your BMI is in the healthy range.")
elif data['bmi'] < 30:
explanation.append("β€’ **BMI**: Your BMI indicates overweight status. Consider lifestyle modifications.")
else:
explanation.append("β€’ **BMI**: Your BMI indicates obesity. This increases diabetes risk.")
# Blood Pressure Analysis
if data['blood_pressure'] < 80:
explanation.append("β€’ **Blood Pressure**: Your blood pressure is normal/low.")
elif data['blood_pressure'] < 90:
explanation.append("β€’ **Blood Pressure**: Your blood pressure is elevated.")
else:
explanation.append("β€’ **Blood Pressure**: Your blood pressure is high. This can increase diabetes risk.")
# Family History Impact
if data['diabetes_pedigree'] > 0.5:
explanation.append("β€’ **Family History**: Your diabetes pedigree function indicates increased hereditary risk.")
else:
explanation.append("β€’ **Family History**: Your hereditary risk appears to be lower than average.")
# Risk Level and Recommendations
if result["prediction"]:
explanation.append("\n### Key Risk Factors:")
if data['glucose'] >= 126:
explanation.append("1. High glucose levels")
if data['bmi'] >= 30:
explanation.append("2. Elevated BMI")
if data['blood_pressure'] >= 90:
explanation.append("3. High blood pressure")
explanation.append("\n### Recommended Actions:")
explanation.append("1. Schedule a consultation with a healthcare provider")
if data['bmi'] >= 25:
explanation.append("2. Consider a structured weight management program")
if data['glucose'] >= 100:
explanation.append("3. Monitor blood glucose regularly")
explanation.append("4. Maintain regular physical activity")
explanation.append("5. Follow a balanced, low-sugar diet")
else:
explanation.append("\n### Preventive Measures:")
explanation.append("1. Maintain regular health check-ups")
explanation.append("2. Continue balanced diet and exercise")
explanation.append("3. Monitor glucose levels annually")
if data['bmi'] >= 25:
explanation.append("4. Consider weight management strategies")
if data['diabetes_pedigree'] > 0.5:
explanation.append("5. Regular screening due to family history")
return "\n".join(explanation)
def show_diabetes_prediction():
st.title("Diabetes Risk Prediction")
# Create sidebar for inputs
with st.sidebar:
st.header("Patient Information")
# Personal Information
st.subheader("Basic Information")
age = st.number_input("Age", min_value=0, max_value=120, value=30)
pregnancies = st.number_input("Number of Pregnancies", min_value=0, max_value=20, value=1)
# Health Metrics
st.subheader("Health Metrics")
glucose = st.number_input("Glucose Level (mg/dL)", min_value=0, max_value=300, value=120)
blood_pressure = st.number_input("Blood Pressure (mm Hg)", min_value=0, max_value=200, value=70)
skin_thickness = st.number_input("Skin Thickness (mm)", min_value=0, max_value=100, value=20)
insulin = st.number_input("Insulin Level (mu U/ml)", min_value=0, max_value=1000, value=80)
bmi = st.number_input("BMI", min_value=0.0, max_value=70.0, value=25.0)
diabetes_pedigree = st.number_input("Diabetes Pedigree Function", min_value=0.0, max_value=3.0, value=0.5,
help="A function that scores likelihood of diabetes based on family history")
# Submit button
predict_button = st.button("Predict Diabetes Risk", key="predict_diabetes")
# Main content area
if predict_button:
# Prepare data for API
data = {
"model_type": "diabetes",
"features": {
"Age": age,
"Pregnancies": pregnancies,
"Glucose": glucose,
"BloodPressure": blood_pressure,
"SkinThickness": skin_thickness,
"Insulin": insulin,
"BMI": bmi,
"DiabetesPedigreeFunction": diabetes_pedigree
}
}
# Call API
with st.spinner("Predicting..."):
try:
response = requests.post(f"{API_URL}/predict", json=data)
if response.status_code == 200:
result = response.json()
# Display results
col1, col2 = st.columns([3, 2])
with col1:
# Prediction result
if result["prediction"]:
st.error("### High Risk of Diabetes ⚠️")
st.markdown("Based on your health metrics, our model predicts an elevated risk of diabetes.")
else:
st.success("### Low Risk of Diabetes βœ…")
st.markdown("Based on your health metrics, our model predicts a lower risk of diabetes.")
# Add personalized explanation
st.info("### Personalized Analysis")
explanation_data = {
'glucose': glucose,
'bmi': bmi,
'blood_pressure': blood_pressure,
'diabetes_pedigree': diabetes_pedigree
}
st.markdown(get_diabetes_explanation(explanation_data, result))
# Risk Factor Analysis
st.subheader("Risk Factor Analysis")
# Create radar chart for risk factors
categories = ['Glucose', 'BMI', 'Age', 'Blood Pressure', 'Insulin', 'Family History']
values = [glucose/300, bmi/50, age/100, blood_pressure/200, insulin/1000, diabetes_pedigree/3]
fig = go.Figure()
fig.add_trace(go.Scatterpolar(
r=values,
theta=categories,
fill='toself',
name='Patient Values'
))
fig.update_layout(
polar=dict(radialaxis=dict(visible=True, range=[0, 1])),
showlegend=False
)
st.plotly_chart(fig)
with col2:
# Risk Level
st.subheader("Risk Assessment")
risk_probability = result["probability"]
st.metric(
label="Risk Level",
value=f"{risk_probability:.1%}"
)
# Health Metrics Analysis
st.markdown("### Health Metrics Analysis")
# Glucose Analysis
glucose_status = ("Normal" if glucose < 100 else
"Pre-diabetic" if glucose < 126 else
"Diabetic Range")
glucose_color = ("good" if glucose < 100 else
"ok" if glucose < 126 else
"bad")
st.markdown(
metric_with_progress(
"Glucose Level",
f"{glucose} mg/dL",
glucose_status,
glucose_color,
min(100, (glucose/126)*100)
),
unsafe_allow_html=True
)
# BMI Analysis
bmi_status = ("Normal" if 18.5 <= bmi <= 24.9 else
"Underweight" if bmi < 18.5 else
"Overweight")
bmi_color = ("good" if 18.5 <= bmi <= 24.9 else "ok")
st.markdown(
metric_with_progress(
"BMI",
f"{bmi:.1f}",
bmi_status,
bmi_color,
min(100, (bmi/30)*100)
),
unsafe_allow_html=True
)
# Blood Pressure Analysis
bp_status = ("Normal" if blood_pressure < 120 else
"Elevated" if blood_pressure < 130 else
"High")
bp_color = ("good" if blood_pressure < 120 else
"ok" if blood_pressure < 130 else
"bad")
st.markdown(
metric_with_progress(
"Blood Pressure",
f"{blood_pressure} mm Hg",
bp_status,
bp_color,
min(100, (blood_pressure/140)*100)
),
unsafe_allow_html=True
)
# Recommendations
if result["prediction"]:
st.markdown("### 🚨 Recommendations")
recommendations = [
"Schedule a consultation with a healthcare provider",
"Monitor blood glucose regularly",
"Maintain a balanced, low-sugar diet",
"Exercise regularly (at least 150 minutes per week)",
"Consider weight management if BMI is high"
]
for rec in recommendations:
st.markdown(f"β€’ {rec}")
else:
st.error(f"Error: API returned status code {response.status_code}")
try:
error_detail = response.json()
st.error(f"Error details: {error_detail}")
except:
st.code(response.text)
except Exception as e:
st.error(f"Error connecting to API: {str(e)}")
st.error(traceback.format_exc())
st.info("Make sure the FastAPI backend is running with: python -m uvicorn src.api.main:app --reload")
def show_liver_prediction():
st.title("Liver Disease Risk Prediction")
# Create sidebar for inputs
with st.sidebar:
st.header("Patient Information")
# Personal Information
st.subheader("Basic Information")
age = st.number_input("Age", min_value=0, max_value=120, value=45, key="liver_age")
gender = st.selectbox("Gender", ["Male", "Female"], key="liver_gender")
# Lab Results Part 1
st.subheader("Lab Results (Part 1)")
total_bilirubin = st.number_input("Total Bilirubin", min_value=0.0, max_value=100.0, value=1.0, step=0.1, key="liver_bilirubin",
help="Normal range: 0.3-1.2 mg/dL")
direct_bilirubin = st.number_input("Direct Bilirubin", min_value=0.0, max_value=50.0, value=0.3, step=0.1, key="liver_direct_bilirubin",
help="Normal range: 0.0-0.3 mg/dL")
alkaline_phosphotase = st.number_input("Alkaline Phosphotase", min_value=0, max_value=2000, value=290, key="liver_alk_phos",
help="Normal range: 45-115 U/L")
# Lab Results Part 2
st.subheader("Lab Results (Part 2)")
alamine_aminotransferase = st.number_input("Alamine Aminotransferase (ALT)", min_value=0, max_value=2000, value=80, key="liver_alamine",
help="Normal range: 7-56 U/L")
aspartate_aminotransferase = st.number_input("Aspartate Aminotransferase (AST)", min_value=0, max_value=2000, value=70, key="liver_aspartate",
help="Normal range: 10-40 U/L")
# Protein Analysis
st.subheader("Protein Analysis")
total_proteins = st.number_input("Total Proteins", min_value=0.0, max_value=20.0, value=6.8, step=0.1, key="liver_proteins",
help="Normal range: 6.0-8.3 g/dL")
albumin = st.number_input("Albumin", min_value=0.0, max_value=10.0, value=3.3, step=0.1, key="liver_albumin",
help="Normal range: 3.5-5.5 g/dL")
albumin_globulin_ratio = st.number_input("Albumin/Globulin Ratio", min_value=0.0, max_value=5.0, value=1.0, step=0.1, key="liver_albumin_ratio",
help="Normal range: 1.0-2.5")
# Submit button
predict_button = st.button("Predict Liver Disease Risk", key="predict_liver")
# Main content area
if predict_button:
# Prepare data for API
data = {
"model_type": "liver",
"features": {
"Age": age,
"Gender": gender,
"Total_Bilirubin": total_bilirubin,
"Direct_Bilirubin": direct_bilirubin,
"Alkaline_Phosphotase": alkaline_phosphotase,
"Alamine_Aminotransferase": alamine_aminotransferase,
"Aspartate_Aminotransferase": aspartate_aminotransferase,
"Total_Protiens": total_proteins,
"Albumin": albumin,
"Albumin_and_Globulin_Ratio": albumin_globulin_ratio
}
}
# Call API
with st.spinner("Analyzing lab results..."):
try:
response = requests.post(f"{API_URL}/predict", json=data)
if response.status_code == 200:
result = response.json()
# Display results
col1, col2 = st.columns([3, 2])
with col1:
# Prediction result
if result["prediction"]:
st.error("### High Risk of Liver Disease ⚠️")
st.markdown("Based on the lab results and analysis, there are indicators suggesting potential liver issues that require medical attention.")
else:
st.success("### Low Risk of Liver Disease βœ…")
st.markdown("Based on the lab results and analysis, the indicators are within normal ranges.")
# Lab Results Analysis
st.subheader("Lab Results Analysis")
# Create metrics for each test with color-coded status
metrics_data = [
{
"name": "Total Bilirubin",
"value": total_bilirubin,
"unit": "mg/dL",
"normal_range": (0.3, 1.2),
"description": "Measures breakdown product of red blood cells"
},
{
"name": "Direct Bilirubin",
"value": direct_bilirubin,
"unit": "mg/dL",
"normal_range": (0.0, 0.3),
"description": "Measures conjugated bilirubin"
},
{
"name": "Alkaline Phosphotase",
"value": alkaline_phosphotase,
"unit": "U/L",
"normal_range": (45, 115),
"description": "Enzyme found in liver and bone"
},
{
"name": "ALT",
"value": alamine_aminotransferase,
"unit": "U/L",
"normal_range": (7, 56),
"description": "Liver-specific enzyme"
},
{
"name": "AST",
"value": aspartate_aminotransferase,
"unit": "U/L",
"normal_range": (10, 40),
"description": "Enzyme found in liver and other tissues"
}
]
# Display metrics in a grid
for i in range(0, len(metrics_data), 2):
col1_metric, col2_metric = st.columns(2)
with col1_metric:
metric = metrics_data[i]
value = metric["value"]
min_val, max_val = metric["normal_range"]
status = "good" if min_val <= value <= max_val else "bad"
progress = min(100, (value / max_val) * 100)
st.markdown(
metric_with_progress(
metric["name"],
f"{value} {metric['unit']}",
f"Normal range: {min_val}-{max_val} {metric['unit']}",
status,
progress
),
unsafe_allow_html=True
)
if i + 1 < len(metrics_data):
with col2_metric:
metric = metrics_data[i + 1]
value = metric["value"]
min_val, max_val = metric["normal_range"]
status = "good" if min_val <= value <= max_val else "bad"
progress = min(100, (value / max_val) * 100)
st.markdown(
metric_with_progress(
metric["name"],
f"{value} {metric['unit']}",
f"Normal range: {min_val}-{max_val} {metric['unit']}",
status,
progress
),
unsafe_allow_html=True
)
# Protein Analysis
st.subheader("Protein Analysis")
protein_metrics = [
{
"name": "Total Proteins",
"value": total_proteins,
"unit": "g/dL",
"normal_range": (6.0, 8.3),
"description": "Total protein in blood"
},
{
"name": "Albumin",
"value": albumin,
"unit": "g/dL",
"normal_range": (3.5, 5.5),
"description": "Main protein in blood"
},
{
"name": "A/G Ratio",
"value": albumin_globulin_ratio,
"unit": "",
"normal_range": (1.0, 2.5),
"description": "Ratio of albumin to globulin"
}
]
# Display protein metrics
for metric in protein_metrics:
value = metric["value"]
min_val, max_val = metric["normal_range"]
status = "good" if min_val <= value <= max_val else "bad"
progress = min(100, (value / max_val) * 100)
st.markdown(
metric_with_progress(
metric["name"],
f"{value} {metric['unit']}",
f"Normal range: {min_val}-{max_val} {metric['unit']}",
status,
progress
),
unsafe_allow_html=True
)
with col2:
# Risk Assessment
st.subheader("Risk Assessment")
risk_probability = result["probability"]
st.metric(
label="Risk Level",
value=f"{risk_probability:.1%}"
)
# Create radar chart for key indicators
st.subheader("Key Indicators Analysis")
# Normalize values for radar chart
radar_data = {
'Liver Function': min(1, (alamine_aminotransferase / 56 + aspartate_aminotransferase / 40) / 2),
'Bilirubin': min(1, total_bilirubin / 1.2),
'Protein Status': min(1, (total_proteins / 8.3 + albumin / 5.5) / 2),
'Enzyme Levels': min(1, alkaline_phosphotase / 115),
'A/G Balance': min(1, albumin_globulin_ratio / 2.5)
}
fig = go.Figure(data=go.Scatterpolar(
fill='toself'
))
fig.add_trace(go.Scatterpolar(
r=list(radar_data.values()),
theta=list(radar_data.keys()),
fill='toself',
name='Patient Values'
))
fig.update_layout(
polar=dict(radialaxis=dict(visible=True, range=[0, 1])),
showlegend=False,
margin=dict(l=0, r=40, t=20, b=20), # Adjust margins to shift graph left
width=500,
height=400
)
st.plotly_chart(fig)
# Recommendations
if result["prediction"]:
st.markdown("### 🚨 Recommendations")
recommendations = []
# Add recommendations based on test results
if total_bilirubin > 1.2:
recommendations.append("β€’ Further liver enzyme tests recommended")
if direct_bilirubin > 0.3:
recommendations.append("β€’ Evaluate for liver/bone conditions")
if total_proteins < 6.0:
recommendations.append("β€’ Improve protein nutrition")
recommendations.append("β€’ Consult a nutritionist")
if alkaline_phosphotase > 115:
recommendations.append("β€’ Consult a hepatologist for detailed evaluation")
recommendations.append("β€’ Consider ultrasound or imaging studies")
if alamine_aminotransferase > 56 or aspartate_aminotransferase > 40:
recommendations.append("β€’ Maintain a liver-healthy diet")
recommendations.append("β€’ Avoid alcohol and hepatotoxic substances")
# Add follow-up recommendation based on severity
abnormal_count = sum([
total_bilirubin > 1.2,
direct_bilirubin > 0.3,
alkaline_phosphotase > 115,
alamine_aminotransferase > 56,
aspartate_aminotransferase > 40,
total_proteins < 6.0,
albumin < 3.5
])
if abnormal_count >= 3:
recommendations.append("β€’ Regular follow-up monitoring every 3 months")
elif abnormal_count >= 1:
recommendations.append("β€’ Follow-up monitoring every 6 months")
else:
recommendations.append("β€’ Annual health check-up recommended")
for rec in recommendations:
st.markdown(rec)
else:
st.markdown("### βœ… Preventive Measures")
preventive_measures = []
# Add personalized preventive measures
if total_bilirubin > 0.8:
preventive_measures.append("β€’ Monitor bilirubin levels during routine check-ups")
if total_proteins < 7.0:
preventive_measures.append("β€’ Maintain adequate protein intake through balanced diet")
if albumin < 4.0:
preventive_measures.append("β€’ Focus on protein-rich foods to maintain albumin levels")
# Add general preventive measures based on age and gender
if age > 40:
preventive_measures.append("β€’ Regular liver function screening every 6-12 months")
else:
preventive_measures.append("β€’ Annual liver function screening")
preventive_measures.extend([
"β€’ Maintain a balanced, liver-friendly diet",
"β€’ Regular exercise to support liver health",
"β€’ Limit alcohol consumption",
"β€’ Stay well-hydrated"
])
for measure in preventive_measures:
st.markdown(measure)
else:
st.error(f"Error: API returned status code {response.status_code}")
try:
error_detail = response.json()
st.error(f"Error details: {error_detail}")
except:
st.code(response.text)
except Exception as e:
st.error(f"Error connecting to API: {str(e)}")
st.error(traceback.format_exc())
st.info("Make sure the FastAPI backend is running with: python -m uvicorn src.api.main:app --reload")
def main():
# Initialize session state for model selection if not exists
if 'selected_model' not in st.session_state:
st.session_state.selected_model = None
if 'healthcare_model' not in st.session_state:
st.session_state.healthcare_model = None
# Show dashboard if no model is selected
if st.session_state.selected_model is None:
show_dashboard()
return
# Add a "Back to Dashboard" button
if st.sidebar.button("← Back to Dashboard"):
st.session_state.selected_model = None
st.session_state.healthcare_model = None
st.experimental_rerun()
# Show the selected model's interface
if st.session_state.selected_model == "loan":
show_loan_prediction()
elif st.session_state.selected_model == "attrition":
show_attrition_prediction()
elif st.session_state.selected_model == "healthcare":
if st.session_state.healthcare_model == "diabetes":
show_diabetes_prediction()
elif st.session_state.healthcare_model == "liver":
show_liver_prediction()
else:
show_healthcare_prediction()
if __name__ == "__main__":
main()