Spaces:
Sleeping
Sleeping
File size: 71,967 Bytes
3efedb0 ffc0fb4 1bb4af3 e59ec7d 3efedb0 b01eb9a 164fe9b 3d66da4 164fe9b 3d66da4 164fe9b 1252073 b01eb9a 1252073 b01eb9a 3efedb0 45135a1 f399394 b5c5137 45135a1 b5c5137 45135a1 f399394 b5c5137 3efedb0 8fa8c79 4ba1708 8fa8c79 3efedb0 8fa8c79 3efedb0 8fa8c79 3efedb0 8fa8c79 3efedb0 8fa8c79 3efedb0 8d54eba 3efedb0 8d54eba 3efedb0 8d54eba 3efedb0 8d54eba 3efedb0 9e04e9f 8d54eba 9e04e9f 3efedb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 |
import streamlit as st
import requests
import pandas as pd
import json
import plotly.express as px
import traceback
import threading
import time
import subprocess
# Fix imports to use relative paths or sys.path modification
import sys
import os
import numpy as np
import pickle
import plotly.graph_objects as go
from datetime import datetime
import joblib
st.set_page_config(
page_title="AI Prediction Dashboard",
page_icon="π―",
layout="wide",
initial_sidebar_state="expanded"
)
# Function to start the API server
def run_api():
try:
# For Hugging Face Spaces, set environment variable
os.environ['SPACE_ID'] = 'huggingface'
# Start the API server
process = subprocess.Popen(
["python", "-m", "uvicorn", "src.api.main:app", "--host", "0.0.0.0", "--port", "8000"],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
)
# Log any errors
for line in process.stderr:
print(f"API Error: {line.strip()}")
except Exception as e:
print(f"Error starting API: {e}")
# Only start the server once after page config is set
if "api_started" not in st.session_state:
threading.Thread(target=run_api).start()
st.session_state.api_started = True
# Wait a few seconds for server to start
time.sleep(5)
# Add the project root to the Python path
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '../..')))
# Import the prediction interfaces
from loan_prediction import show_loan_prediction
from src.frontend.attrition_prediction import show_attrition_prediction
# Now import the modules
try:
from src.utils.chatbot import ExplainableChatbot
from src.explainers.bias_detector import BiasDetector
from src.utils.report_generator import ReportGenerator
except ImportError as e:
# Create dummy classes for development/testing
class ExplainableChatbot:
def __init__(self):
pass
def get_response(self, question, context=None):
return f"This is a placeholder response for: {question}"
class BiasDetector:
def __init__(self, model=None, sensitive_features=None):
self.sensitive_features = sensitive_features or []
class ReportGenerator:
def generate_loan_report(self, output_path, data, **kwargs):
# Create a simple text file as placeholder
with open(output_path, 'w') as f:
f.write("Sample Report\n\n")
f.write(str(data))
return True
import tempfile
# Custom CSS to fix text alignment in status boxes and add progress bars
st.markdown("""
<style>
.project-title {
text-align: center;
background: linear-gradient(120deg, #4c78a8, #2c3153);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
font-size: 4rem;
font-weight: 800;
margin: -1rem auto 1rem auto;
padding: 1rem;
letter-spacing: 2px;
text-transform: uppercase;
font-family: 'Helvetica Neue', sans-serif;
display: block;
}
.stApp {
overflow: auto;
height: 100vh;
}
.main .block-container {
max-width: 100%;
padding: 2rem;
overflow-x: hidden;
}
[data-testid="stSidebar"] .block-container {
overflow-x: hidden;
}
.status-box {
display: inline-block;
padding: 6px 0px;
border-radius: 4px;
text-align: center;
font-weight: bold;
width: 100%;
white-space: nowrap;
font-size: 14px;
}
.status-good {
background-color: #0e5814;
color: white;
}
.status-ok {
background-color: #9c6a00;
color: white;
}
.status-bad {
background-color: #8b0000;
color: white;
}
.metric-label {
font-size: 18px;
font-weight: bold;
margin-bottom: 5px;
}
.metric-value {
font-size: 28px;
font-weight: bold;
}
.metric-desc {
font-size: 14px;
color: #ccc;
margin-top: 5px;
}
.progress-container {
width: 100%;
background-color: #333;
border-radius: 5px;
margin-top: 10px;
}
.progress-bar {
height: 10px;
border-radius: 5px;
}
.progress-good {
background-color: #0e5814;
}
.progress-ok {
background-color: #9c6a00;
}
.progress-bad {
background-color: #8b0000;
}
.model-card {
padding: 20px;
border-radius: 10px;
background-color: #1e2130;
border: 1px solid #2c3153;
margin: 10px 0;
transition: transform 0.3s;
height: 100%;
display: flex;
flex-direction: column;
justify-content: space-between;
}
.model-card:hover {
transform: translateY(-5px);
border-color: #4c78a8;
cursor: pointer;
}
.model-title {
font-size: 24px;
font-weight: bold;
margin-bottom: 10px;
text-align: center;
color: #ffffff;
}
.model-description {
font-size: 16px;
color: #ccc;
margin: 15px 0;
text-align: center;
}
.centered-content {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
text-align: center;
}
.healthcare-card {
padding: 20px;
border-radius: 10px;
background-color: #1e2130;
border: 1px solid #2c3153;
margin: 10px 0;
transition: transform 0.3s;
height: 400px; /* Fixed height for both cards */
display: flex;
flex-direction: column;
justify-content: space-between;
}
.healthcare-card:hover {
transform: translateY(-5px);
border-color: #4c78a8;
cursor: pointer;
}
.healthcare-description {
font-size: 16px;
color: #ccc;
margin: 15px 0;
text-align: center;
flex-grow: 1; /* Allow description to take available space */
}
.healthcare-icon {
display: flex;
justify-content: center;
align-items: center;
margin: 20px 0;
}
.main {
padding: 2rem;
}
.stButton>button {
width: 100%;
height: 3rem;
font-size: 1.2rem;
margin-top: 1rem;
}
.prediction-box {
padding: 2rem;
border-radius: 10px;
margin: 1rem 0;
}
.high-risk {
background-color: #ffebee;
border: 2px solid #f44336;
}
.low-risk {
background-color: #e8f5e9;
border: 2px solid #4caf50;
}
</style>
""", unsafe_allow_html=True)
# Function to create status box
def status_box(status, text):
if status == "good":
return f'<div class="status-box status-good">{text}</div>'
elif status == "ok":
return f'<div class="status-box status-ok">{text}</div>'
else:
return f'<div class="status-box status-bad">{text}</div>'
# Function to create a metric with progress bar
def metric_with_progress(label, value, description, status, progress_percent):
progress_class = "progress-good" if status == "good" else "progress-ok" if status == "ok" else "progress-bad"
return f"""
<div class="metric-label">{label}</div>
<div class="metric-value">{value}</div>
<div class="metric-desc">{description}</div>
<div class="progress-container">
<div class="progress-bar {progress_class}" style="width: {progress_percent}%"></div>
</div>
"""
# API endpoint
API_URL = "http://127.0.0.1:8000"
def show_dashboard():
st.markdown('<div class="project-title">Intuitron</div>', unsafe_allow_html=True)
st.markdown("## AI Prediction Dashboard")
st.markdown("### Select a Prediction Model")
# Create three columns for the model cards
col1, col2, col3 = st.columns(3)
with col1:
st.markdown("""
<div class="model-card">
<div class="model-title">π¦ Loan Approval</div>
<div class="model-description">
Predict loan approval probability based on financial and personal information.
Features include credit score, income, assets, and more.
</div>
<div class="centered-content">
<img src="https://img.icons8.com/fluency/96/000000/bank-building.png" style="margin: 20px 0;">
</div>
</div>
""", unsafe_allow_html=True)
if st.button("Launch Loan Predictor"):
st.session_state.selected_model = "loan"
st.experimental_rerun()
with col2:
st.markdown("""
<div class="model-card">
<div class="model-title">π₯ Employee Attrition</div>
<div class="model-description">
Predict employee attrition risk using HR analytics data.
Analyze factors like job satisfaction, salary, and work-life balance.
</div>
<div class="centered-content">
<img src="https://img.icons8.com/fluency/96/000000/employee-card.png" style="margin: 20px 0;">
</div>
</div>
""", unsafe_allow_html=True)
if st.button("Launch Attrition Predictor"):
st.session_state.selected_model = "attrition"
st.experimental_rerun()
with col3:
st.markdown("""
<div class="model-card">
<div class="model-title">π₯ Healthcare</div>
<div class="model-description">
Predict healthcare outcomes and risk factors. Analyze patient data for better healthcare decisions.
Includes diabetes and liver disease prediction models.
</div>
<div class="centered-content">
<img src="https://img.icons8.com/fluency/96/000000/hospital.png" style="margin: 20px 0;">
</div>
</div>
""", unsafe_allow_html=True)
if st.button("Launch Healthcare Predictor"):
st.session_state.selected_model = "healthcare"
st.experimental_rerun()
def get_loan_explanation(data, result):
"""Generate personalized explanation for loan prediction"""
explanation = []
# Credit Score Analysis
if data['cibil_score'] >= 750:
explanation.append("β’ **Credit Score**: Excellent credit score (750+) significantly improves your loan approval chances.")
elif data['cibil_score'] >= 650:
explanation.append("β’ **Credit Score**: Good credit score (650-749) supports your application.")
else:
explanation.append("β’ **Credit Score**: Your credit score is below 650, which may affect loan approval.")
# Income and Loan Amount Analysis
monthly_income = data['income_annum'] / 12
loan_term_months = data['loan_term'] * 12
# Assuming 8% annual interest rate for EMI calculation
r = 0.08 / 12
emi = (data['loan_amount'] * r * (1 + r)**loan_term_months) / ((1 + r)**loan_term_months - 1)
dti_ratio = (emi / monthly_income) * 100
if dti_ratio <= 40:
explanation.append(f"β’ **Affordability**: Your EMI would be βΉ{emi:,.2f}, which is {dti_ratio:.1f}% of monthly income - this is within acceptable limits.")
else:
explanation.append(f"β’ **Affordability**: Your EMI would be βΉ{emi:,.2f}, which is {dti_ratio:.1f}% of monthly income - this may be too high.")
# Assets Analysis
total_assets = (data['residential_assets_value'] + data['commercial_assets_value'] +
data['luxury_assets_value'] + data['bank_asset_value'])
asset_ratio = total_assets / data['loan_amount']
if asset_ratio >= 2:
explanation.append(f"β’ **Asset Coverage**: Your total assets (βΉ{total_assets:,.2f}) provide excellent security, covering {asset_ratio:.1f}x the loan amount.")
elif asset_ratio >= 1:
explanation.append(f"β’ **Asset Coverage**: Your assets provide adequate security, covering {asset_ratio:.1f}x the loan amount.")
else:
explanation.append(f"β’ **Asset Coverage**: Your assets cover only {asset_ratio:.1f}x the loan amount, which may be insufficient.")
# Employment and Education
if data['education'] == "Graduate":
explanation.append("β’ **Education**: Being a graduate strengthens your application.")
else:
explanation.append("β’ **Education**: Higher education could improve future loan eligibility.")
if data['self_employed'] == "Yes":
explanation.append("β’ **Employment**: Being self-employed may require additional income documentation.")
else:
explanation.append("β’ **Employment**: Salaried employment provides stable income assessment.")
# Overall Assessment
if result["prediction"]:
explanation.append("\n### Key Approval Factors:")
strengths = []
if data['cibil_score'] >= 650:
strengths.append("Strong credit history")
if dti_ratio <= 40:
strengths.append("Good affordability ratio")
if asset_ratio >= 1.5:
strengths.append("Strong asset coverage")
if data['education'] == "Graduate":
strengths.append("Higher education")
explanation.append("β’ " + ", ".join(strengths))
else:
explanation.append("\n### Areas for Improvement:")
if data['cibil_score'] < 650:
explanation.append("1. Work on improving credit score")
if dti_ratio > 40:
explanation.append("2. Consider a lower loan amount or longer tenure")
if asset_ratio < 1.5:
explanation.append("3. Strengthen asset position")
if data['education'] != "Graduate":
explanation.append("4. Consider additional qualification")
return "\n".join(explanation)
# Load the trained model and components
@st.cache_resource
def load_model():
try:
model_path = os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(__file__))), 'models', 'loan_model.joblib')
if not os.path.exists(model_path):
st.error("Model file not found. Please train the model first.")
return None
model_data = joblib.load(model_path)
return model_data
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return None
def show_loan_prediction():
st.title("Loan Approval Prediction System")
# Create sidebar for inputs
with st.sidebar:
st.header("Loan Application Details")
# Personal information
st.subheader("Personal Information")
no_of_dependents = st.slider("Number of Dependents", 0, 10, 2)
education = st.selectbox("Education", ["Graduate", "Not Graduate"])
self_employed = st.selectbox("Self Employed", ["Yes", "No"])
# Financial information
st.subheader("Financial Information")
income_annum = st.number_input("Annual Income (βΉ)", min_value=100000, max_value=20000000, value=5000000, step=100000)
loan_amount = st.number_input("Loan Amount (βΉ)", min_value=100000, max_value=50000000, value=10000000, step=100000)
loan_term = st.slider("Loan Term (years)", 2, 30, 15)
cibil_score = st.slider("CIBIL Score", 300, 900, 650)
# Assets information
st.subheader("Assets Information")
residential_assets_value = st.number_input("Residential Assets Value (βΉ)", min_value=0, max_value=50000000, value=5000000, step=100000)
commercial_assets_value = st.number_input("Commercial Assets Value (βΉ)", min_value=0, max_value=50000000, value=2000000, step=100000)
luxury_assets_value = st.number_input("Luxury Assets Value (βΉ)", min_value=0, max_value=50000000, value=1000000, step=100000)
bank_asset_value = st.number_input("Bank Assets Value (βΉ)", min_value=0, max_value=50000000, value=3000000, step=100000)
# Submit button
predict_button = st.button("Predict Loan Approval")
# Main content area
if predict_button:
# Prepare input data
input_data = {
"no_of_dependents": no_of_dependents,
"education": education,
"self_employed": self_employed,
"income_annum": income_annum,
"loan_amount": loan_amount,
"loan_term": loan_term,
"cibil_score": cibil_score,
"residential_assets_value": residential_assets_value,
"commercial_assets_value": commercial_assets_value,
"luxury_assets_value": luxury_assets_value,
"bank_asset_value": bank_asset_value
}
try:
# Make API request
response = requests.post(
"http://localhost:8000/predict/loan_approval",
json=input_data
)
response.raise_for_status()
result = response.json()
# Display results
col1, col2 = st.columns([3, 2])
with col1:
# Prediction result
if result["prediction"] == "Approved":
st.success("### Loan Approved! β
")
else:
st.error("### Loan Rejected β")
# Explanation section
st.subheader("Explanation")
for explanation in result["explanation"]:
st.write(explanation)
# Factors Affecting Application
st.subheader("Factors Affecting Your Application")
# Create DataFrame for visualization
feature_importance = result["feature_importance"]
importance_df = pd.DataFrame({
'Feature': list(feature_importance.keys()),
'Importance': list(feature_importance.values())
})
importance_df = importance_df.sort_values('Importance', ascending=False)
# Create horizontal bar chart
fig = px.bar(
importance_df,
x='Importance',
y='Feature',
orientation='h',
color='Importance',
color_continuous_scale=px.colors.sequential.Blues
)
fig.update_layout(
margin=dict(l=20, r=20, t=30, b=20),
height=400
)
st.plotly_chart(fig, use_container_width=True)
with col2:
# Approval Probability
st.subheader("Approval Probability")
st.markdown(f"### {result['probability']:.2%}")
# Financial Metrics
st.subheader("Financial Metrics")
metrics = result["financial_metrics"]
metrics_col1, metrics_col2, metrics_col3 = st.columns(3)
with metrics_col1:
st.markdown("**CIBIL Score**")
st.markdown(f"### {cibil_score}")
if cibil_score >= 750:
st.markdown("Excellent - Very favorable")
elif cibil_score >= 650:
st.markdown("Fair - Average credit history")
else:
st.markdown("Poor - Unfavorable credit history")
with metrics_col2:
st.markdown("**Debt-to-Income**")
st.markdown(f"### {metrics['debt_to_income']:.2f}")
if metrics['debt_to_income'] <= 0.3:
st.markdown("Low - Very manageable")
elif metrics['debt_to_income'] <= 0.5:
st.markdown("Medium - Manageable")
else:
st.markdown("High - Significant burden")
with metrics_col3:
st.markdown("**Assets-to-Loan**")
st.markdown(f"### {metrics['asset_to_loan']:.2f}")
if metrics['asset_to_loan'] >= 2:
st.markdown("Strong - Excellent coverage")
elif metrics['asset_to_loan'] >= 1:
st.markdown("Fair - Adequate coverage")
else:
st.markdown("Weak - Limited coverage")
# Monthly Payment Analysis
st.subheader("Monthly Payment Analysis")
st.markdown(f"**Monthly Payment:** βΉ{metrics['monthly_payment']:,.2f}")
st.markdown(f"This represents {(metrics['monthly_payment'] / metrics['monthly_income'] * 100):.2f}% of your monthly income (βΉ{metrics['monthly_income']:,.2f})")
if metrics['debt_to_income'] <= 0.3:
st.markdown("Excellent - Very affordable payment")
elif metrics['debt_to_income'] <= 0.5:
st.markdown("Good - Manageable payment")
else:
st.markdown("Caution - High payment burden")
# Assets Information
st.subheader("Assets Information")
st.markdown(f"Total Assets: βΉ{metrics['total_assets']:,.2f}")
# Create pie chart for asset breakdown
asset_labels = ['Residential', 'Commercial', 'Luxury', 'Bank']
asset_values = [residential_assets_value, commercial_assets_value, luxury_assets_value, bank_asset_value]
fig = px.pie(
values=asset_values,
names=asset_labels,
title='Assets Breakdown'
)
fig.update_layout(margin=dict(l=20, r=20, t=30, b=20))
st.plotly_chart(fig, use_container_width=True)
except requests.exceptions.RequestException as e:
st.error(f"Error making prediction: {str(e)}")
st.error(traceback.format_exc())
st.info("Make sure the FastAPI backend is running with: python -m uvicorn src.api.main:app --reload")
def get_attrition_explanation(data, result):
"""Generate personalized explanation for attrition prediction"""
explanation = []
# Job Level Analysis
if data['job_level'] <= 2:
explanation.append("β’ **Career Growth**: Being in a junior/mid-level position may present opportunities for advancement. Consider discussing career development paths with your manager.")
else:
explanation.append("β’ **Senior Position**: Your senior position indicates strong career progression, which typically correlates with lower attrition.")
# Satisfaction Analysis
if data['job_satisfaction'] < 3:
explanation.append("β’ **Job Satisfaction**: Your job satisfaction score indicates room for improvement. Consider discussing any concerns with your supervisor.")
else:
explanation.append("β’ **Job Satisfaction**: Your high job satisfaction is a positive indicator for retention.")
if data['work_life_balance'] < 3:
explanation.append("β’ **Work-Life Balance**: Your work-life balance score suggests potential stress. Consider discussing flexible work arrangements.")
else:
explanation.append("β’ **Work-Life Balance**: You maintain a healthy work-life balance, which is crucial for long-term retention.")
# Compensation Analysis
expected_income = 3000 * (1 + data['total_working_years'] * 0.1) * data['job_level']
if data['monthly_income'] < expected_income:
explanation.append("β’ **Compensation**: Your current compensation might be below market rate for your experience level. Consider discussing this during your next review.")
else:
explanation.append("β’ **Compensation**: Your compensation is competitive for your experience level.")
# Experience and Tenure
if data['years_at_company'] < 2:
explanation.append("β’ **Tenure**: Being relatively new to the company, it's important to focus on integration and building strong relationships.")
elif data['years_at_company'] > 5:
explanation.append("β’ **Tenure**: Your long tenure indicates strong company loyalty and established relationships.")
# Overall Risk Assessment
if result["prediction"]:
explanation.append("\n### Risk Mitigation Strategies:")
if data['job_satisfaction'] < 3:
explanation.append("1. Schedule a career development discussion")
if data['work_life_balance'] < 3:
explanation.append("2. Review workload and scheduling")
if data['monthly_income'] < expected_income:
explanation.append("3. Prepare for compensation discussion")
else:
explanation.append("\n### Retention Strengths:")
strengths = []
if data['job_satisfaction'] >= 3:
strengths.append("High job satisfaction")
if data['work_life_balance'] >= 3:
strengths.append("Good work-life balance")
if data['monthly_income'] >= expected_income:
strengths.append("Competitive compensation")
explanation.append("β’ " + ", ".join(strengths))
return "\n".join(explanation)
def show_attrition_prediction():
st.title("Employee Attrition Prediction")
# Create sidebar for inputs
with st.sidebar:
st.header("Employee Details")
# Personal Information
st.subheader("Personal Information")
age = st.slider("Age", 18, 65, 30)
# Job Information
st.subheader("Job Information")
distance_from_home = st.slider("Distance From Home (km)", 1, 30, 5)
job_level = st.slider("Job Level", 1, 5, 2)
monthly_income = st.number_input("Monthly Income", min_value=1000, max_value=20000, value=5000, step=500)
overtime = st.selectbox("Overtime", ["Yes", "No"])
# Work Experience
st.subheader("Work Experience")
total_working_years = st.slider("Total Working Years", 0, 40, 5)
years_at_company = st.slider("Years at Company", 0, 40, 3)
# Satisfaction Metrics
st.subheader("Satisfaction Metrics")
environment_satisfaction = st.slider("Environment Satisfaction", 1, 4, 3,
help="1=Low, 2=Medium, 3=High, 4=Very High")
job_satisfaction = st.slider("Job Satisfaction", 1, 4, 3,
help="1=Low, 2=Medium, 3=High, 4=Very High")
work_life_balance = st.slider("Work Life Balance", 1, 4, 3,
help="1=Low, 2=Medium, 3=High, 4=Very High")
# Submit button
predict_button = st.button("Predict Attrition Risk")
# Main content area
if predict_button:
# Prepare data for API
data = {
"model_type": "attrition",
"features": {
"Age": age,
"DistanceFromHome": distance_from_home,
"EnvironmentSatisfaction": environment_satisfaction,
"JobLevel": job_level,
"JobSatisfaction": job_satisfaction,
"MonthlyIncome": monthly_income,
"OverTime": overtime,
"TotalWorkingYears": total_working_years,
"WorkLifeBalance": work_life_balance,
"YearsAtCompany": years_at_company
}
}
# Call API
with st.spinner("Predicting..."):
try:
response = requests.post(f"{API_URL}/predict", json=data)
if response.status_code == 200:
result = response.json()
# Display results
col1, col2 = st.columns([3, 2])
with col1:
# Prediction result
if result["prediction"]:
st.error("### High Attrition Risk β οΈ")
st.markdown("This employee may be at risk of leaving.")
else:
st.success("### Low Attrition Risk β
")
st.markdown("This employee is likely to stay with the company.")
# Add personalized explanation
st.info("### Personalized Analysis")
explanation_data = {
'job_level': job_level,
'monthly_income': monthly_income,
'job_satisfaction': job_satisfaction,
'work_life_balance': work_life_balance,
'years_at_company': years_at_company,
'total_working_years': total_working_years
}
st.markdown(get_attrition_explanation(explanation_data, result))
# Feature importance visualization
st.subheader("Factors Affecting Attrition Risk")
feature_importance = {
"Monthly Income": 0.20,
"Years at Company": 0.15,
"Job Satisfaction": 0.15,
"Work Life Balance": 0.12,
"Distance From Home": 0.10,
"Environment Satisfaction": 0.10,
"Job Level": 0.08,
"Age": 0.05,
"Total Working Years": 0.03,
"Overtime": 0.02
}
feature_df = pd.DataFrame({
"feature": list(feature_importance.keys()),
"importance": list(feature_importance.values())
})
fig = px.bar(
feature_df,
x="importance",
y="feature",
orientation='h',
title="Impact of Different Factors on Attrition Risk",
labels={"importance": "Impact", "feature": "Factor"},
height=400
)
st.plotly_chart(fig, use_container_width=True)
with col2:
# Add container for better styling
with st.container():
# Probability gauge
st.subheader("Attrition Probability")
attrition_prob = result["probability"]
st.metric(
label="Risk Level",
value=f"{attrition_prob:.1%}"
)
st.markdown("---")
# Employee Profile Summary
st.subheader("Employee Profile")
# Job Metrics
metrics_col1, metrics_col2 = st.columns(2)
with metrics_col1:
# Job Level
level_status = "good" if job_level >= 3 else "ok"
level_desc = "Senior Position" if job_level >= 3 else "Junior/Mid-level Position"
level_percent = (job_level / 5) * 100
st.markdown(
metric_with_progress("Job Level", str(job_level), level_desc, level_status, level_percent),
unsafe_allow_html=True
)
with metrics_col2:
# Years at Company
tenure_status = "good" if years_at_company >= 5 else "ok"
tenure_desc = "Experienced Employee" if years_at_company >= 5 else "Growing Experience"
tenure_percent = min((years_at_company / 10) * 100, 100)
st.markdown(
metric_with_progress("Tenure", f"{years_at_company} years", tenure_desc, tenure_status, tenure_percent),
unsafe_allow_html=True
)
# Satisfaction Metrics
st.markdown("### Satisfaction Levels")
sat_col1, sat_col2 = st.columns(2)
with sat_col1:
# Job Satisfaction
job_sat_status = "good" if job_satisfaction >= 3 else "ok" if job_satisfaction >= 2 else "bad"
job_sat_desc = "High Satisfaction" if job_satisfaction >= 3 else "Moderate Satisfaction" if job_satisfaction >= 2 else "Low Satisfaction"
job_sat_percent = (job_satisfaction / 4) * 100
st.markdown(
metric_with_progress("Job Satisfaction", f"{job_satisfaction}/4", job_sat_desc, job_sat_status, job_sat_percent),
unsafe_allow_html=True
)
with sat_col2:
# Work Life Balance
wlb_status = "good" if work_life_balance >= 3 else "ok" if work_life_balance >= 2 else "bad"
wlb_desc = "Good Balance" if work_life_balance >= 3 else "Moderate Balance" if work_life_balance >= 2 else "Poor Balance"
wlb_percent = (work_life_balance / 4) * 100
st.markdown(
metric_with_progress("Work-Life Balance", f"{work_life_balance}/4", wlb_desc, wlb_status, wlb_percent),
unsafe_allow_html=True
)
# Compensation Analysis
st.markdown("### Compensation Analysis")
# Monthly Income vs Experience
income_per_year = monthly_income * 12
expected_income = 3000 * (1 + total_working_years * 0.1) * job_level # Simple model for expected income
income_ratio = income_per_year / expected_income
income_status = "good" if income_ratio >= 1 else "ok" if income_ratio >= 0.8 else "bad"
income_desc = f"{'Above' if income_ratio >= 1 else 'Near' if income_ratio >= 0.8 else 'Below'} expected for experience level"
income_percent = min(income_ratio * 100, 100)
st.markdown(
metric_with_progress(
"Annual Income",
f"βΉ{income_per_year:,.0f}",
income_desc,
income_status,
income_percent
),
unsafe_allow_html=True
)
# If high attrition risk, show recommendations
if result["prediction"]:
st.markdown("### π¨ Retention Recommendations")
recommendations = []
if monthly_income < 5000:
recommendations.append("Consider a compensation review")
if job_satisfaction < 3:
recommendations.append("Schedule a job satisfaction discussion")
if work_life_balance < 3:
recommendations.append("Review workload and scheduling")
if environment_satisfaction < 3:
recommendations.append("Assess work environment concerns")
if overtime == "Yes":
recommendations.append("Review workload distribution and overtime requirements")
for rec in recommendations:
st.markdown(f"β’ {rec}")
else:
st.error(f"Error: API returned status code {response.status_code}")
try:
error_detail = response.json()
st.error(f"Error details: {error_detail}")
except:
st.code(response.text)
except Exception as e:
st.error(f"Error connecting to API: {str(e)}")
st.error(traceback.format_exc())
st.info("Make sure the FastAPI backend is running with: python -m uvicorn src.api.main:app --reload")
def show_healthcare_prediction():
st.title("Healthcare Prediction Models")
st.markdown("### Select a healthcare prediction model to get started")
# Create two columns for the prediction options
col1, col2 = st.columns(2)
with col1:
st.markdown("""
<div class="healthcare-card">
<div class="healthcare-icon">
<img src="https://img.icons8.com/color/96/000000/dna-helix.png" style="margin: 20px 0;">
</div>
<div class="model-title">Diabetes Prediction</div>
<div class="healthcare-description">
Assess the risk of diabetes based on health metrics and patient history.
</div>
</div>
""", unsafe_allow_html=True)
if st.button("Select Diabetes Prediction", key="select_diabetes"):
st.session_state.healthcare_model = "diabetes"
st.experimental_rerun()
with col2:
st.markdown("""
<div class="healthcare-card">
<div class="healthcare-icon">
<img src="https://img.icons8.com/color/96/000000/microscope.png" style="margin: 20px 0;">
</div>
<div class="model-title">Liver Disease Prediction</div>
<div class="healthcare-description">
Evaluate liver health and disease risk based on patient data and lab results.
</div>
</div>
""", unsafe_allow_html=True)
if st.button("Select Liver Disease Prediction", key="select_liver"):
st.session_state.healthcare_model = "liver"
st.experimental_rerun()
# Add a back button
if st.button("β Back to Dashboard", key="healthcare_back"):
st.session_state.selected_model = None
st.session_state.healthcare_model = None
st.experimental_rerun()
def get_diabetes_explanation(data, result):
"""Generate personalized explanation for diabetes prediction"""
explanation = []
# Glucose Analysis
if data['glucose'] < 100:
explanation.append("β’ **Glucose Level**: Your glucose level is within normal range (<100 mg/dL).")
elif data['glucose'] < 126:
explanation.append("β’ **Glucose Level**: Your glucose level indicates pre-diabetes (100-125 mg/dL). Consider lifestyle modifications.")
else:
explanation.append("β’ **Glucose Level**: Your glucose level is in the diabetic range (>126 mg/dL). Medical consultation recommended.")
# BMI Analysis
if data['bmi'] < 18.5:
explanation.append("β’ **BMI**: Your BMI indicates underweight status. Consider nutritional consultation.")
elif data['bmi'] < 25:
explanation.append("β’ **BMI**: Your BMI is in the healthy range.")
elif data['bmi'] < 30:
explanation.append("β’ **BMI**: Your BMI indicates overweight status. Consider lifestyle modifications.")
else:
explanation.append("β’ **BMI**: Your BMI indicates obesity. This increases diabetes risk.")
# Blood Pressure Analysis
if data['blood_pressure'] < 80:
explanation.append("β’ **Blood Pressure**: Your blood pressure is normal/low.")
elif data['blood_pressure'] < 90:
explanation.append("β’ **Blood Pressure**: Your blood pressure is elevated.")
else:
explanation.append("β’ **Blood Pressure**: Your blood pressure is high. This can increase diabetes risk.")
# Family History Impact
if data['diabetes_pedigree'] > 0.5:
explanation.append("β’ **Family History**: Your diabetes pedigree function indicates increased hereditary risk.")
else:
explanation.append("β’ **Family History**: Your hereditary risk appears to be lower than average.")
# Risk Level and Recommendations
if result["prediction"]:
explanation.append("\n### Key Risk Factors:")
if data['glucose'] >= 126:
explanation.append("1. High glucose levels")
if data['bmi'] >= 30:
explanation.append("2. Elevated BMI")
if data['blood_pressure'] >= 90:
explanation.append("3. High blood pressure")
explanation.append("\n### Recommended Actions:")
explanation.append("1. Schedule a consultation with a healthcare provider")
if data['bmi'] >= 25:
explanation.append("2. Consider a structured weight management program")
if data['glucose'] >= 100:
explanation.append("3. Monitor blood glucose regularly")
explanation.append("4. Maintain regular physical activity")
explanation.append("5. Follow a balanced, low-sugar diet")
else:
explanation.append("\n### Preventive Measures:")
explanation.append("1. Maintain regular health check-ups")
explanation.append("2. Continue balanced diet and exercise")
explanation.append("3. Monitor glucose levels annually")
if data['bmi'] >= 25:
explanation.append("4. Consider weight management strategies")
if data['diabetes_pedigree'] > 0.5:
explanation.append("5. Regular screening due to family history")
return "\n".join(explanation)
def show_diabetes_prediction():
st.title("Diabetes Risk Prediction")
# Create sidebar for inputs
with st.sidebar:
st.header("Patient Information")
# Personal Information
st.subheader("Basic Information")
age = st.number_input("Age", min_value=0, max_value=120, value=30)
pregnancies = st.number_input("Number of Pregnancies", min_value=0, max_value=20, value=1)
# Health Metrics
st.subheader("Health Metrics")
glucose = st.number_input("Glucose Level (mg/dL)", min_value=0, max_value=300, value=120)
blood_pressure = st.number_input("Blood Pressure (mm Hg)", min_value=0, max_value=200, value=70)
skin_thickness = st.number_input("Skin Thickness (mm)", min_value=0, max_value=100, value=20)
insulin = st.number_input("Insulin Level (mu U/ml)", min_value=0, max_value=1000, value=80)
bmi = st.number_input("BMI", min_value=0.0, max_value=70.0, value=25.0)
diabetes_pedigree = st.number_input("Diabetes Pedigree Function", min_value=0.0, max_value=3.0, value=0.5,
help="A function that scores likelihood of diabetes based on family history")
# Submit button
predict_button = st.button("Predict Diabetes Risk", key="predict_diabetes")
# Main content area
if predict_button:
# Prepare data for API
data = {
"model_type": "diabetes",
"features": {
"Age": age,
"Pregnancies": pregnancies,
"Glucose": glucose,
"BloodPressure": blood_pressure,
"SkinThickness": skin_thickness,
"Insulin": insulin,
"BMI": bmi,
"DiabetesPedigreeFunction": diabetes_pedigree
}
}
# Call API
with st.spinner("Predicting..."):
try:
response = requests.post(f"{API_URL}/predict", json=data)
if response.status_code == 200:
result = response.json()
# Display results
col1, col2 = st.columns([3, 2])
with col1:
# Prediction result
if result["prediction"]:
st.error("### High Risk of Diabetes β οΈ")
st.markdown("Based on your health metrics, our model predicts an elevated risk of diabetes.")
else:
st.success("### Low Risk of Diabetes β
")
st.markdown("Based on your health metrics, our model predicts a lower risk of diabetes.")
# Add personalized explanation
st.info("### Personalized Analysis")
explanation_data = {
'glucose': glucose,
'bmi': bmi,
'blood_pressure': blood_pressure,
'diabetes_pedigree': diabetes_pedigree
}
st.markdown(get_diabetes_explanation(explanation_data, result))
# Risk Factor Analysis
st.subheader("Risk Factor Analysis")
# Create radar chart for risk factors
categories = ['Glucose', 'BMI', 'Age', 'Blood Pressure', 'Insulin', 'Family History']
values = [glucose/300, bmi/50, age/100, blood_pressure/200, insulin/1000, diabetes_pedigree/3]
fig = go.Figure()
fig.add_trace(go.Scatterpolar(
r=values,
theta=categories,
fill='toself',
name='Patient Values'
))
fig.update_layout(
polar=dict(radialaxis=dict(visible=True, range=[0, 1])),
showlegend=False
)
st.plotly_chart(fig)
with col2:
# Risk Level
st.subheader("Risk Assessment")
risk_probability = result["probability"]
st.metric(
label="Risk Level",
value=f"{risk_probability:.1%}"
)
# Health Metrics Analysis
st.markdown("### Health Metrics Analysis")
# Glucose Analysis
glucose_status = ("Normal" if glucose < 100 else
"Pre-diabetic" if glucose < 126 else
"Diabetic Range")
glucose_color = ("good" if glucose < 100 else
"ok" if glucose < 126 else
"bad")
st.markdown(
metric_with_progress(
"Glucose Level",
f"{glucose} mg/dL",
glucose_status,
glucose_color,
min(100, (glucose/126)*100)
),
unsafe_allow_html=True
)
# BMI Analysis
bmi_status = ("Normal" if 18.5 <= bmi <= 24.9 else
"Underweight" if bmi < 18.5 else
"Overweight")
bmi_color = ("good" if 18.5 <= bmi <= 24.9 else "ok")
st.markdown(
metric_with_progress(
"BMI",
f"{bmi:.1f}",
bmi_status,
bmi_color,
min(100, (bmi/30)*100)
),
unsafe_allow_html=True
)
# Blood Pressure Analysis
bp_status = ("Normal" if blood_pressure < 120 else
"Elevated" if blood_pressure < 130 else
"High")
bp_color = ("good" if blood_pressure < 120 else
"ok" if blood_pressure < 130 else
"bad")
st.markdown(
metric_with_progress(
"Blood Pressure",
f"{blood_pressure} mm Hg",
bp_status,
bp_color,
min(100, (blood_pressure/140)*100)
),
unsafe_allow_html=True
)
# Recommendations
if result["prediction"]:
st.markdown("### π¨ Recommendations")
recommendations = [
"Schedule a consultation with a healthcare provider",
"Monitor blood glucose regularly",
"Maintain a balanced, low-sugar diet",
"Exercise regularly (at least 150 minutes per week)",
"Consider weight management if BMI is high"
]
for rec in recommendations:
st.markdown(f"β’ {rec}")
else:
st.error(f"Error: API returned status code {response.status_code}")
try:
error_detail = response.json()
st.error(f"Error details: {error_detail}")
except:
st.code(response.text)
except Exception as e:
st.error(f"Error connecting to API: {str(e)}")
st.error(traceback.format_exc())
st.info("Make sure the FastAPI backend is running with: python -m uvicorn src.api.main:app --reload")
def show_liver_prediction():
st.title("Liver Disease Risk Prediction")
# Create sidebar for inputs
with st.sidebar:
st.header("Patient Information")
# Personal Information
st.subheader("Basic Information")
age = st.number_input("Age", min_value=0, max_value=120, value=45, key="liver_age")
gender = st.selectbox("Gender", ["Male", "Female"], key="liver_gender")
# Lab Results Part 1
st.subheader("Lab Results (Part 1)")
total_bilirubin = st.number_input("Total Bilirubin", min_value=0.0, max_value=100.0, value=1.0, step=0.1, key="liver_bilirubin",
help="Normal range: 0.3-1.2 mg/dL")
direct_bilirubin = st.number_input("Direct Bilirubin", min_value=0.0, max_value=50.0, value=0.3, step=0.1, key="liver_direct_bilirubin",
help="Normal range: 0.0-0.3 mg/dL")
alkaline_phosphotase = st.number_input("Alkaline Phosphotase", min_value=0, max_value=2000, value=290, key="liver_alk_phos",
help="Normal range: 45-115 U/L")
# Lab Results Part 2
st.subheader("Lab Results (Part 2)")
alamine_aminotransferase = st.number_input("Alamine Aminotransferase (ALT)", min_value=0, max_value=2000, value=80, key="liver_alamine",
help="Normal range: 7-56 U/L")
aspartate_aminotransferase = st.number_input("Aspartate Aminotransferase (AST)", min_value=0, max_value=2000, value=70, key="liver_aspartate",
help="Normal range: 10-40 U/L")
# Protein Analysis
st.subheader("Protein Analysis")
total_proteins = st.number_input("Total Proteins", min_value=0.0, max_value=20.0, value=6.8, step=0.1, key="liver_proteins",
help="Normal range: 6.0-8.3 g/dL")
albumin = st.number_input("Albumin", min_value=0.0, max_value=10.0, value=3.3, step=0.1, key="liver_albumin",
help="Normal range: 3.5-5.5 g/dL")
albumin_globulin_ratio = st.number_input("Albumin/Globulin Ratio", min_value=0.0, max_value=5.0, value=1.0, step=0.1, key="liver_albumin_ratio",
help="Normal range: 1.0-2.5")
# Submit button
predict_button = st.button("Predict Liver Disease Risk", key="predict_liver")
# Main content area
if predict_button:
# Prepare data for API
data = {
"model_type": "liver",
"features": {
"Age": age,
"Gender": gender,
"Total_Bilirubin": total_bilirubin,
"Direct_Bilirubin": direct_bilirubin,
"Alkaline_Phosphotase": alkaline_phosphotase,
"Alamine_Aminotransferase": alamine_aminotransferase,
"Aspartate_Aminotransferase": aspartate_aminotransferase,
"Total_Protiens": total_proteins,
"Albumin": albumin,
"Albumin_and_Globulin_Ratio": albumin_globulin_ratio
}
}
# Call API
with st.spinner("Analyzing lab results..."):
try:
response = requests.post(f"{API_URL}/predict", json=data)
if response.status_code == 200:
result = response.json()
# Display results
col1, col2 = st.columns([3, 2])
with col1:
# Prediction result
if result["prediction"]:
st.error("### High Risk of Liver Disease β οΈ")
st.markdown("Based on the lab results and analysis, there are indicators suggesting potential liver issues that require medical attention.")
else:
st.success("### Low Risk of Liver Disease β
")
st.markdown("Based on the lab results and analysis, the indicators are within normal ranges.")
# Lab Results Analysis
st.subheader("Lab Results Analysis")
# Create metrics for each test with color-coded status
metrics_data = [
{
"name": "Total Bilirubin",
"value": total_bilirubin,
"unit": "mg/dL",
"normal_range": (0.3, 1.2),
"description": "Measures breakdown product of red blood cells"
},
{
"name": "Direct Bilirubin",
"value": direct_bilirubin,
"unit": "mg/dL",
"normal_range": (0.0, 0.3),
"description": "Measures conjugated bilirubin"
},
{
"name": "Alkaline Phosphotase",
"value": alkaline_phosphotase,
"unit": "U/L",
"normal_range": (45, 115),
"description": "Enzyme found in liver and bone"
},
{
"name": "ALT",
"value": alamine_aminotransferase,
"unit": "U/L",
"normal_range": (7, 56),
"description": "Liver-specific enzyme"
},
{
"name": "AST",
"value": aspartate_aminotransferase,
"unit": "U/L",
"normal_range": (10, 40),
"description": "Enzyme found in liver and other tissues"
}
]
# Display metrics in a grid
for i in range(0, len(metrics_data), 2):
col1_metric, col2_metric = st.columns(2)
with col1_metric:
metric = metrics_data[i]
value = metric["value"]
min_val, max_val = metric["normal_range"]
status = "good" if min_val <= value <= max_val else "bad"
progress = min(100, (value / max_val) * 100)
st.markdown(
metric_with_progress(
metric["name"],
f"{value} {metric['unit']}",
f"Normal range: {min_val}-{max_val} {metric['unit']}",
status,
progress
),
unsafe_allow_html=True
)
if i + 1 < len(metrics_data):
with col2_metric:
metric = metrics_data[i + 1]
value = metric["value"]
min_val, max_val = metric["normal_range"]
status = "good" if min_val <= value <= max_val else "bad"
progress = min(100, (value / max_val) * 100)
st.markdown(
metric_with_progress(
metric["name"],
f"{value} {metric['unit']}",
f"Normal range: {min_val}-{max_val} {metric['unit']}",
status,
progress
),
unsafe_allow_html=True
)
# Protein Analysis
st.subheader("Protein Analysis")
protein_metrics = [
{
"name": "Total Proteins",
"value": total_proteins,
"unit": "g/dL",
"normal_range": (6.0, 8.3),
"description": "Total protein in blood"
},
{
"name": "Albumin",
"value": albumin,
"unit": "g/dL",
"normal_range": (3.5, 5.5),
"description": "Main protein in blood"
},
{
"name": "A/G Ratio",
"value": albumin_globulin_ratio,
"unit": "",
"normal_range": (1.0, 2.5),
"description": "Ratio of albumin to globulin"
}
]
# Display protein metrics
for metric in protein_metrics:
value = metric["value"]
min_val, max_val = metric["normal_range"]
status = "good" if min_val <= value <= max_val else "bad"
progress = min(100, (value / max_val) * 100)
st.markdown(
metric_with_progress(
metric["name"],
f"{value} {metric['unit']}",
f"Normal range: {min_val}-{max_val} {metric['unit']}",
status,
progress
),
unsafe_allow_html=True
)
with col2:
# Risk Assessment
st.subheader("Risk Assessment")
risk_probability = result["probability"]
st.metric(
label="Risk Level",
value=f"{risk_probability:.1%}"
)
# Create radar chart for key indicators
st.subheader("Key Indicators Analysis")
# Normalize values for radar chart
radar_data = {
'Liver Function': min(1, (alamine_aminotransferase / 56 + aspartate_aminotransferase / 40) / 2),
'Bilirubin': min(1, total_bilirubin / 1.2),
'Protein Status': min(1, (total_proteins / 8.3 + albumin / 5.5) / 2),
'Enzyme Levels': min(1, alkaline_phosphotase / 115),
'A/G Balance': min(1, albumin_globulin_ratio / 2.5)
}
fig = go.Figure(data=go.Scatterpolar(
fill='toself'
))
fig.add_trace(go.Scatterpolar(
r=list(radar_data.values()),
theta=list(radar_data.keys()),
fill='toself',
name='Patient Values'
))
fig.update_layout(
polar=dict(radialaxis=dict(visible=True, range=[0, 1])),
showlegend=False,
margin=dict(l=0, r=40, t=20, b=20), # Adjust margins to shift graph left
width=500,
height=400
)
st.plotly_chart(fig)
# Recommendations
if result["prediction"]:
st.markdown("### π¨ Recommendations")
recommendations = []
# Add recommendations based on test results
if total_bilirubin > 1.2:
recommendations.append("β’ Further liver enzyme tests recommended")
if direct_bilirubin > 0.3:
recommendations.append("β’ Evaluate for liver/bone conditions")
if total_proteins < 6.0:
recommendations.append("β’ Improve protein nutrition")
recommendations.append("β’ Consult a nutritionist")
if alkaline_phosphotase > 115:
recommendations.append("β’ Consult a hepatologist for detailed evaluation")
recommendations.append("β’ Consider ultrasound or imaging studies")
if alamine_aminotransferase > 56 or aspartate_aminotransferase > 40:
recommendations.append("β’ Maintain a liver-healthy diet")
recommendations.append("β’ Avoid alcohol and hepatotoxic substances")
# Add follow-up recommendation based on severity
abnormal_count = sum([
total_bilirubin > 1.2,
direct_bilirubin > 0.3,
alkaline_phosphotase > 115,
alamine_aminotransferase > 56,
aspartate_aminotransferase > 40,
total_proteins < 6.0,
albumin < 3.5
])
if abnormal_count >= 3:
recommendations.append("β’ Regular follow-up monitoring every 3 months")
elif abnormal_count >= 1:
recommendations.append("β’ Follow-up monitoring every 6 months")
else:
recommendations.append("β’ Annual health check-up recommended")
for rec in recommendations:
st.markdown(rec)
else:
st.markdown("### β
Preventive Measures")
preventive_measures = []
# Add personalized preventive measures
if total_bilirubin > 0.8:
preventive_measures.append("β’ Monitor bilirubin levels during routine check-ups")
if total_proteins < 7.0:
preventive_measures.append("β’ Maintain adequate protein intake through balanced diet")
if albumin < 4.0:
preventive_measures.append("β’ Focus on protein-rich foods to maintain albumin levels")
# Add general preventive measures based on age and gender
if age > 40:
preventive_measures.append("β’ Regular liver function screening every 6-12 months")
else:
preventive_measures.append("β’ Annual liver function screening")
preventive_measures.extend([
"β’ Maintain a balanced, liver-friendly diet",
"β’ Regular exercise to support liver health",
"β’ Limit alcohol consumption",
"β’ Stay well-hydrated"
])
for measure in preventive_measures:
st.markdown(measure)
else:
st.error(f"Error: API returned status code {response.status_code}")
try:
error_detail = response.json()
st.error(f"Error details: {error_detail}")
except:
st.code(response.text)
except Exception as e:
st.error(f"Error connecting to API: {str(e)}")
st.error(traceback.format_exc())
st.info("Make sure the FastAPI backend is running with: python -m uvicorn src.api.main:app --reload")
def main():
# Initialize session state for model selection if not exists
if 'selected_model' not in st.session_state:
st.session_state.selected_model = None
if 'healthcare_model' not in st.session_state:
st.session_state.healthcare_model = None
# Show dashboard if no model is selected
if st.session_state.selected_model is None:
show_dashboard()
return
# Add a "Back to Dashboard" button
if st.sidebar.button("β Back to Dashboard"):
st.session_state.selected_model = None
st.session_state.healthcare_model = None
st.experimental_rerun()
# Show the selected model's interface
if st.session_state.selected_model == "loan":
show_loan_prediction()
elif st.session_state.selected_model == "attrition":
show_attrition_prediction()
elif st.session_state.selected_model == "healthcare":
if st.session_state.healthcare_model == "diabetes":
show_diabetes_prediction()
elif st.session_state.healthcare_model == "liver":
show_liver_prediction()
else:
show_healthcare_prediction()
if __name__ == "__main__":
main() |