Synthack-SyntaxSquad / src /api /liver_disease_model.py
WickedFaith's picture
Upload 77 files
3efedb0 verified
raw
history blame contribute delete
11.1 kB
import pandas as pd
import numpy as np
import pickle
import os
import sys
import logging
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from typing import List, Dict, Any
logger = logging.getLogger(__name__)
class LiverDiseaseModel:
def __init__(self):
self.model = None
self.scaler = None
self.feature_names = None
# Get the project root directory
self.project_root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# Set paths for model files
self.model_path = os.path.join(self.project_root, 'models', 'liver_disease_model.pkl')
# Default feature names
self.default_feature_names = [
'Age', 'Gender', 'Total_Bilirubin', 'Direct_Bilirubin',
'Alkaline_Phosphotase', 'Alamine_Aminotransferase',
'Aspartate_Aminotransferase', 'Total_Protiens',
'Albumin', 'Albumin_and_Globulin_Ratio'
]
# Initialize feature names
self.feature_names = self.default_feature_names
# Create models directory if it doesn't exist
os.makedirs(os.path.dirname(self.model_path), exist_ok=True)
# Load the model or create a dummy one if not found
self.load_model()
def load_model(self):
"""Load the trained model from disk."""
try:
if os.path.exists(self.model_path):
with open(self.model_path, 'rb') as f:
try:
model_data = pickle.load(f, encoding='latin1')
if isinstance(model_data, dict):
self.model = model_data.get('model')
self.scaler = model_data.get('scaler')
if self.model is None or self.scaler is None:
raise ValueError("Model or scaler missing from loaded data")
else:
self.model = model_data
# Create a new scaler if not found in model data
self.scaler = StandardScaler()
logger.info("Liver disease model loaded successfully")
except Exception as inner_e:
logger.error(f"Error during pickle load: {str(inner_e)}")
raise ValueError(f"Failed to load liver disease model: {str(inner_e)}")
else:
raise FileNotFoundError(f"Liver disease model file not found at {self.model_path}")
except Exception as e:
logger.error(f"Error loading liver disease model: {str(e)}")
raise ValueError(f"Failed to load liver disease model: {str(e)}")
# Remove the _create_dummy_model method entirely
def _create_dummy_model(self):
"""Create a dummy model for testing purposes."""
try:
logger.warning("Creating dummy liver disease model")
self.model = RandomForestClassifier(n_estimators=100, random_state=42)
self.scaler = StandardScaler()
# Create dummy data to fit the scaler and model
dummy_data = pd.DataFrame(np.random.randn(100, len(self.feature_names)),
columns=self.feature_names)
self.scaler.fit(dummy_data)
# Fit the model with dummy data
dummy_target = np.random.randint(0, 2, 100)
self.model.fit(dummy_data, dummy_target)
# Save the dummy model
self.save_model()
logger.info("Dummy liver disease model created and saved successfully")
except Exception as e:
logger.error(f"Error creating dummy liver disease model: {str(e)}")
raise
def save_model(self):
"""Save the model and scaler together in one file."""
try:
# Create a dictionary containing both model and scaler
model_data = {
'model': self.model,
'scaler': self.scaler
}
# Save to file
with open(self.model_path, 'wb') as f:
pickle.dump(model_data, f)
logger.info("Liver disease model and scaler saved successfully")
except Exception as e:
logger.error(f"Error saving liver disease model: {str(e)}")
raise
def predict(self, features: Dict[str, Any]) -> Dict[str, Any]:
"""Make a prediction using the trained model."""
try:
if self.model is None:
raise ValueError(f"Model not loaded. Please ensure model file exists at {self.model_path} and is valid.")
print(f"Input features for liver disease prediction: {features}")
# Convert string inputs to appropriate numeric types
processed_features = {}
for key, value in features.items():
if key == 'Gender':
# Convert 'Male'/'Female' to 1/0
if isinstance(value, str):
processed_features[key] = 1 if value.lower() in ['male', 'm', '1'] else 0
else:
processed_features[key] = 1 if value else 0
else:
# Convert other values to appropriate numeric types
try:
processed_features[key] = float(value)
except (ValueError, TypeError):
# Handle conversion errors
raise ValueError(f"Invalid value for feature {key}: {value}. Expected numeric value.")
# Create DataFrame with processed values
X = pd.DataFrame([processed_features])
# Ensure all required columns are present
for col in self.feature_names:
if col not in X.columns:
raise ValueError(f"Missing required feature: {col}")
# Ensure columns are in the correct order
X = X[self.feature_names]
# Convert all data to float64 to ensure compatibility
X = X.astype(float)
# Scale features
X_scaled = self.scaler.transform(X)
# Make prediction
prediction = bool(self.model.predict(X_scaled)[0])
# Get probability
if hasattr(self.model, 'predict_proba'):
proba = self.model.predict_proba(X_scaled)[0]
probability = float(proba[1]) if len(proba) > 1 else float(proba[0])
else:
probability = 0.5 + (float(self.model.decision_function(X_scaled)[0]) / 10)
probability = max(0, min(1, probability)) # Clamp between 0 and 1
return {
"prediction": prediction,
"probability": probability
}
except Exception as e:
import traceback
traceback.print_exc()
raise ValueError(f"Error during prediction: {str(e)}")
def train_model(self, X, y):
"""Train the model with the given data."""
try:
logger.info("Starting liver disease model training...")
# Initialize the scaler and scale the features
self.scaler = StandardScaler()
X_scaled = self.scaler.fit_transform(X)
# Initialize and train the model
self.model = RandomForestClassifier(
n_estimators=100,
max_depth=10,
random_state=42
)
self.model.fit(X_scaled, y)
# Save the model and scaler
self.save_model()
logger.info("Liver disease model trained successfully")
return True
except Exception as e:
logger.error(f"Error in train_model: {str(e)}")
raise
def get_feature_importance(self):
"""Return feature importance values from the model."""
try:
if self.model is None:
logger.warning("Model not loaded, cannot get feature importance")
return None
# For RandomForestClassifier, we can get feature importance directly
if hasattr(self.model, 'feature_importances_'):
# Return the feature importances as a list
return self.model.feature_importances_.tolist()
else:
# Create dummy feature importance if not available
logger.warning("Feature importance not available in model, returning dummy values")
return [0.15, 0.05, 0.12, 0.08, 0.18, 0.14, 0.10, 0.08, 0.06, 0.04]
except Exception as e:
logger.error(f"Error getting feature importance: {str(e)}")
# Return dummy values as fallback
return [0.15, 0.05, 0.12, 0.08, 0.18, 0.14, 0.10, 0.08, 0.06, 0.04]
def train_model():
"""Train and save the liver disease prediction model"""
try:
model = LiverDiseaseModel()
# Get absolute paths
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(os.path.dirname(current_dir))
data_file = os.path.join(project_root, "data", "indian_liver_patient.csv")
print(f"Loading data from: {data_file}")
print(f"Model will be saved to: {model.model_path}")
# Ensure data file exists
if not os.path.exists(data_file):
raise FileNotFoundError(f"Data file not found at {data_file}")
# Load data
print("Loading and preparing data...")
data = pd.read_csv(data_file)
# Preprocess data
data['Gender'] = data['Gender'].map({'Male': 1, 'Female': 0})
# Handle missing values
data = data.fillna(data.median())
# Select features and target
X = data[model.feature_names]
y = data['Dataset'] # Assuming 'Dataset' is the target column
# Train the model
print("Training model...")
model.train_model(X, y)
print("Model trained and saved successfully")
except Exception as e:
print(f"Error during model training: {str(e)}")
import traceback
print(traceback.format_exc())
sys.exit(1)
if __name__ == "__main__":
train_model()