File size: 11,057 Bytes
3efedb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import pandas as pd
import numpy as np
import pickle
import os
import sys
import logging
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from typing import List, Dict, Any

logger = logging.getLogger(__name__)

class LiverDiseaseModel:
    def __init__(self):
        self.model = None
        self.scaler = None
        self.feature_names = None
        
        # Get the project root directory
        self.project_root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
        
        # Set paths for model files
        self.model_path = os.path.join(self.project_root, 'models', 'liver_disease_model.pkl')
        
        # Default feature names
        self.default_feature_names = [
            'Age', 'Gender', 'Total_Bilirubin', 'Direct_Bilirubin', 
            'Alkaline_Phosphotase', 'Alamine_Aminotransferase', 
            'Aspartate_Aminotransferase', 'Total_Protiens', 
            'Albumin', 'Albumin_and_Globulin_Ratio'
        ]
        
        # Initialize feature names
        self.feature_names = self.default_feature_names
        
        # Create models directory if it doesn't exist
        os.makedirs(os.path.dirname(self.model_path), exist_ok=True)
        
        # Load the model or create a dummy one if not found
        self.load_model()

    def load_model(self):
        """Load the trained model from disk."""
        try:
            if os.path.exists(self.model_path):
                with open(self.model_path, 'rb') as f:
                    try:
                        model_data = pickle.load(f, encoding='latin1')
                        if isinstance(model_data, dict):
                            self.model = model_data.get('model')
                            self.scaler = model_data.get('scaler')
                            if self.model is None or self.scaler is None:
                                raise ValueError("Model or scaler missing from loaded data")
                        else:
                            self.model = model_data
                            # Create a new scaler if not found in model data
                            self.scaler = StandardScaler()
                        logger.info("Liver disease model loaded successfully")
                    except Exception as inner_e:
                        logger.error(f"Error during pickle load: {str(inner_e)}")
                        raise ValueError(f"Failed to load liver disease model: {str(inner_e)}")
            else:
                raise FileNotFoundError(f"Liver disease model file not found at {self.model_path}")
        except Exception as e:
            logger.error(f"Error loading liver disease model: {str(e)}")
            raise ValueError(f"Failed to load liver disease model: {str(e)}")

    # Remove the _create_dummy_model method entirely

    def _create_dummy_model(self):
        """Create a dummy model for testing purposes."""
        try:
            logger.warning("Creating dummy liver disease model")
            self.model = RandomForestClassifier(n_estimators=100, random_state=42)
            self.scaler = StandardScaler()
            
            # Create dummy data to fit the scaler and model
            dummy_data = pd.DataFrame(np.random.randn(100, len(self.feature_names)), 
                                    columns=self.feature_names)
            self.scaler.fit(dummy_data)
            
            # Fit the model with dummy data
            dummy_target = np.random.randint(0, 2, 100)
            self.model.fit(dummy_data, dummy_target)
            
            # Save the dummy model
            self.save_model()
            
            logger.info("Dummy liver disease model created and saved successfully")
        except Exception as e:
            logger.error(f"Error creating dummy liver disease model: {str(e)}")
            raise

    def save_model(self):
        """Save the model and scaler together in one file."""
        try:
            # Create a dictionary containing both model and scaler
            model_data = {
                'model': self.model,
                'scaler': self.scaler
            }
            
            # Save to file
            with open(self.model_path, 'wb') as f:
                pickle.dump(model_data, f)
            logger.info("Liver disease model and scaler saved successfully")
            
        except Exception as e:
            logger.error(f"Error saving liver disease model: {str(e)}")
            raise

    def predict(self, features: Dict[str, Any]) -> Dict[str, Any]:
        """Make a prediction using the trained model."""
        try:
            if self.model is None:
                raise ValueError(f"Model not loaded. Please ensure model file exists at {self.model_path} and is valid.")
            
            print(f"Input features for liver disease prediction: {features}")
            
            # Convert string inputs to appropriate numeric types
            processed_features = {}
            for key, value in features.items():
                if key == 'Gender':
                    # Convert 'Male'/'Female' to 1/0
                    if isinstance(value, str):
                        processed_features[key] = 1 if value.lower() in ['male', 'm', '1'] else 0
                    else:
                        processed_features[key] = 1 if value else 0
                else:
                    # Convert other values to appropriate numeric types
                    try:
                        processed_features[key] = float(value)
                    except (ValueError, TypeError):
                        # Handle conversion errors
                        raise ValueError(f"Invalid value for feature {key}: {value}. Expected numeric value.")
            
            # Create DataFrame with processed values
            X = pd.DataFrame([processed_features])
            
            # Ensure all required columns are present
            for col in self.feature_names:
                if col not in X.columns:
                    raise ValueError(f"Missing required feature: {col}")
            
            # Ensure columns are in the correct order
            X = X[self.feature_names]
            
            # Convert all data to float64 to ensure compatibility
            X = X.astype(float)
            
            # Scale features
            X_scaled = self.scaler.transform(X)
            
            # Make prediction
            prediction = bool(self.model.predict(X_scaled)[0])
            
            # Get probability
            if hasattr(self.model, 'predict_proba'):
                proba = self.model.predict_proba(X_scaled)[0]
                probability = float(proba[1]) if len(proba) > 1 else float(proba[0])
            else:
                probability = 0.5 + (float(self.model.decision_function(X_scaled)[0]) / 10)
                probability = max(0, min(1, probability))  # Clamp between 0 and 1
            
            return {
                "prediction": prediction,
                "probability": probability
            }
            
        except Exception as e:
            import traceback
            traceback.print_exc()
            raise ValueError(f"Error during prediction: {str(e)}")

    def train_model(self, X, y):
        """Train the model with the given data."""
        try:
            logger.info("Starting liver disease model training...")
            
            # Initialize the scaler and scale the features
            self.scaler = StandardScaler()
            X_scaled = self.scaler.fit_transform(X)
            
            # Initialize and train the model
            self.model = RandomForestClassifier(
                n_estimators=100,
                max_depth=10,
                random_state=42
            )
            self.model.fit(X_scaled, y)
            
            # Save the model and scaler
            self.save_model()
            
            logger.info("Liver disease model trained successfully")
            return True
            
        except Exception as e:
            logger.error(f"Error in train_model: {str(e)}")
            raise

    def get_feature_importance(self):
        """Return feature importance values from the model."""
        try:
            if self.model is None:
                logger.warning("Model not loaded, cannot get feature importance")
                return None
                
            # For RandomForestClassifier, we can get feature importance directly
            if hasattr(self.model, 'feature_importances_'):
                # Return the feature importances as a list
                return self.model.feature_importances_.tolist()
            else:
                # Create dummy feature importance if not available
                logger.warning("Feature importance not available in model, returning dummy values")
                return [0.15, 0.05, 0.12, 0.08, 0.18, 0.14, 0.10, 0.08, 0.06, 0.04]
        except Exception as e:
            logger.error(f"Error getting feature importance: {str(e)}")
            # Return dummy values as fallback
            return [0.15, 0.05, 0.12, 0.08, 0.18, 0.14, 0.10, 0.08, 0.06, 0.04]

def train_model():
    """Train and save the liver disease prediction model"""
    try:
        model = LiverDiseaseModel()
        
        # Get absolute paths
        current_dir = os.path.dirname(os.path.abspath(__file__))
        project_root = os.path.dirname(os.path.dirname(current_dir))
        data_file = os.path.join(project_root, "data", "indian_liver_patient.csv")
        
        print(f"Loading data from: {data_file}")
        print(f"Model will be saved to: {model.model_path}")
        
        # Ensure data file exists
        if not os.path.exists(data_file):
            raise FileNotFoundError(f"Data file not found at {data_file}")
        
        # Load data
        print("Loading and preparing data...")
        data = pd.read_csv(data_file)
        
        # Preprocess data
        data['Gender'] = data['Gender'].map({'Male': 1, 'Female': 0})
        
        # Handle missing values
        data = data.fillna(data.median())
        
        # Select features and target
        X = data[model.feature_names]
        y = data['Dataset']  # Assuming 'Dataset' is the target column
        
        # Train the model
        print("Training model...")
        model.train_model(X, y)
        print("Model trained and saved successfully")
        
    except Exception as e:
        print(f"Error during model training: {str(e)}")
        import traceback
        print(traceback.format_exc())
        sys.exit(1)

if __name__ == "__main__":
    train_model()