add prompt prefix
Browse files
app.py
CHANGED
@@ -3,11 +3,29 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
3 |
import torch
|
4 |
|
5 |
# Load the pre-trained model and tokenizer
|
6 |
-
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def generate_recommendation(appliance_info):
|
10 |
-
prompt = f"Input: {appliance_info}\nOutput:"
|
11 |
inputs = tokenizer(prompt, return_tensors="pt")
|
12 |
outputs = model.generate(**inputs, max_new_tokens=200)
|
13 |
recommendation = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
3 |
import torch
|
4 |
|
5 |
# Load the pre-trained model and tokenizer
|
6 |
+
model_name = "microsoft/phi-2"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
+
|
10 |
+
promptPre = f"""You are an energy-saving expert tasked to help households reduce their monthly electricity bills.
|
11 |
+
Given the user's appliance usage information (including device name, wattage, hours used per day, and days used per week),
|
12 |
+
analyze and recommend specific, practical ways they can reduce their energy consumption.
|
13 |
+
|
14 |
+
Always prioritize suggestions like:
|
15 |
+
- Reducing usage time or frequency when excessive
|
16 |
+
- Replacing high-consumption appliances with more efficient alternatives (e.g., inverter air conditioners, LED lights)
|
17 |
+
- Changing habits (e.g., using fans instead of air conditioners when possible)
|
18 |
+
- Avoiding unnecessary standby power consumption
|
19 |
+
- Considering lifestyle changes (e.g., reading books instead of watching TV)
|
20 |
+
|
21 |
+
Format the output clearly with bullet points or short paragraphs.
|
22 |
+
Be empathetic, practical, and encouraging. Focus on achievable actions for the user.
|
23 |
+
|
24 |
+
Here is the user's input:
|
25 |
+
"""
|
26 |
|
27 |
def generate_recommendation(appliance_info):
|
28 |
+
prompt = f"Input: promptPre + {appliance_info}\nOutput:"
|
29 |
inputs = tokenizer(prompt, return_tensors="pt")
|
30 |
outputs = model.generate(**inputs, max_new_tokens=200)
|
31 |
recommendation = tokenizer.decode(outputs[0], skip_special_tokens=True)
|