Update app.py
Browse files
app.py
CHANGED
@@ -3,14 +3,13 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
3 |
import torch
|
4 |
|
5 |
# Load the pre-trained model and tokenizer
|
6 |
-
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
8 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
|
10 |
def generate_recommendation(appliance_info):
|
11 |
prompt = f"Input: {appliance_info}\nOutput:"
|
12 |
inputs = tokenizer(prompt, return_tensors="pt")
|
13 |
-
outputs = model.generate(**inputs, max_new_tokens=
|
14 |
recommendation = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
15 |
return recommendation.split("Output:")[-1].strip()
|
16 |
|
|
|
3 |
import torch
|
4 |
|
5 |
# Load the pre-trained model and tokenizer
|
6 |
+
model = AutoModelForCausalLM.from_pretrained("Wh1plashR/energy-saving-recommender-phi2-lora")
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("Wh1plashR/energy-saving-recommender-phi2-lora")
|
|
|
8 |
|
9 |
def generate_recommendation(appliance_info):
|
10 |
prompt = f"Input: {appliance_info}\nOutput:"
|
11 |
inputs = tokenizer(prompt, return_tensors="pt")
|
12 |
+
outputs = model.generate(**inputs, max_new_tokens=200)
|
13 |
recommendation = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
14 |
return recommendation.split("Output:")[-1].strip()
|
15 |
|