Spaces:
Running
on
Zero
Running
on
Zero
import os,sys | |
os.system("python -m pip install -e segment_anything") | |
os.system("python -m pip install -e GroundingDINO") | |
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO")) | |
sys.path.append(os.path.join(os.getcwd(), "segment_anything")) | |
os.system("wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swinb_cogcoor.pth") | |
os.system("wget https://huggingface.co/spaces/mrtlive/segment-anything-model/resolve/main/sam_vit_h_4b8939.pth") | |
import cv2 | |
import numpy as np | |
import torch | |
import torchvision | |
import gradio as gr | |
from PIL import Image | |
from GroundingDINO.groundingdino.util.inference import load_model | |
from segment_anything import build_sam, SamPredictor | |
import spaces | |
import GroundingDINO.groundingdino.datasets.transforms as T | |
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap | |
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# GroundingDINO config and checkpoint | |
GROUNDING_DINO_CONFIG_PATH = "./GroundingDINO_SwinB.cfg.py" | |
GROUNDING_DINO_CHECKPOINT_PATH = "./groundingdino_swinb_cogcoor.pth" | |
# Segment-Anything checkpoint | |
SAM_ENCODER_VERSION = "vit_h" | |
SAM_CHECKPOINT_PATH = "./sam_vit_h_4b8939.pth" | |
# Building GroundingDINO inference model | |
groundingdino_model = load_model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH, device=DEVICE) | |
# Building SAM Model and SAM Predictor | |
sam = build_sam(checkpoint=SAM_CHECKPOINT_PATH) | |
sam.to(device=DEVICE) | |
sam_predictor = SamPredictor(sam) | |
def transform_image(image_pil): | |
transform = T.Compose( | |
[ | |
T.RandomResize([800], max_size=1333), | |
T.ToTensor(), | |
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
image, _ = transform(image_pil, None) # 3, h, w | |
return image | |
def get_grounding_output(model, image, caption, box_threshold=0.25, text_threshold=0.25, with_logits=True): | |
caption = caption.lower() | |
caption = caption.strip() | |
if not caption.endswith("."): | |
caption = caption + "." | |
with torch.no_grad(): | |
outputs = model(image[None], captions=[caption]) | |
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) | |
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) | |
logits.shape[0] | |
# filter output | |
logits_filt = logits.clone() | |
boxes_filt = boxes.clone() | |
filt_mask = logits_filt.max(dim=1)[0] > box_threshold | |
logits_filt = logits_filt[filt_mask] # num_filt, 256 | |
boxes_filt = boxes_filt[filt_mask] # num_filt, 4 | |
logits_filt.shape[0] | |
# get phrase | |
tokenlizer = model.tokenizer | |
tokenized = tokenlizer(caption) | |
# build pred | |
pred_phrases = [] | |
scores = [] | |
for logit, box in zip(logits_filt, boxes_filt): | |
pred_phrase = get_phrases_from_posmap( | |
logit > text_threshold, tokenized, tokenlizer) | |
if with_logits: | |
pred_phrases.append( | |
pred_phrase + f"({str(logit.max().item())[:4]})") | |
else: | |
pred_phrases.append(pred_phrase) | |
scores.append(logit.max().item()) | |
return boxes_filt, torch.Tensor(scores), pred_phrases | |
def run_local(image, label): | |
global groundingdino_model, sam_predictor | |
image_pil = image.convert("RGB") | |
transformed_image = transform_image(image_pil) | |
boxes_filt, scores, pred_phrases = get_grounding_output( | |
groundingdino_model, transformed_image, label | |
) | |
size = image_pil.size | |
# process boxes | |
H, W = size[1], size[0] | |
for i in range(boxes_filt.size(0)): | |
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) | |
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 | |
boxes_filt[i][2:] += boxes_filt[i][:2] | |
boxes_filt = boxes_filt.cpu() | |
# nms | |
nms_idx = torchvision.ops.nms( | |
boxes_filt, scores, 0.8).numpy().tolist() | |
boxes_filt = boxes_filt[nms_idx] | |
pred_phrases = [pred_phrases[idx] for idx in nms_idx] | |
image = np.array(image_pil) | |
sam_predictor.set_image(image) | |
transformed_boxes = sam_predictor.transform.apply_boxes_torch( | |
boxes_filt, image.shape[:2]).to(DEVICE) | |
masks, _, _ = sam_predictor.predict_torch( | |
point_coords=None, | |
point_labels=None, | |
boxes=transformed_boxes, | |
multimask_output=False, | |
) | |
result_mask = masks[0][0].cpu().numpy() | |
result_mask = Image.fromarray(result_mask) | |
return [result_mask] | |
with gr.Blocks() as demo: | |
gr.Markdown("# Segment") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(sources='upload', type="pil", height=512) | |
text_prompt = gr.Textbox(label="Label") | |
with gr.Column(): | |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery", height=512) | |
run_local_button = gr.Button(value="Run") | |
run_local_button.click(fn=run_local, | |
inputs=[input_image, text_prompt], | |
outputs=[gallery] | |
) | |
demo.launch() |