File size: 5,069 Bytes
b4092c0
 
 
 
 
 
 
 
 
 
 
 
 
 
896aaf0
 
b4092c0
896aaf0
 
b4092c0
 
 
 
 
 
 
 
 
 
 
 
896aaf0
b4092c0
896aaf0
b4092c0
 
 
896aaf0
b4092c0
896aaf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4092c0
 
 
896aaf0
b4092c0
 
a4222bb
896aaf0
b4092c0
 
896aaf0
 
b4092c0
 
896aaf0
b4092c0
896aaf0
 
 
 
 
 
b4092c0
896aaf0
b4092c0
896aaf0
b4092c0
896aaf0
 
 
 
b4092c0
 
896aaf0
 
b4092c0
896aaf0
 
b4092c0
896aaf0
 
 
 
 
 
 
b4092c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ac1bff
b4092c0
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os,sys
os.system("python -m pip install -e segment_anything")
os.system("python -m pip install -e GroundingDINO")
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO"))
sys.path.append(os.path.join(os.getcwd(), "segment_anything"))
os.system("wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swinb_cogcoor.pth")
os.system("wget https://huggingface.co/spaces/mrtlive/segment-anything-model/resolve/main/sam_vit_h_4b8939.pth")

import cv2
import numpy as np
import torch
import torchvision
import gradio as gr
from PIL import Image
from GroundingDINO.groundingdino.util.inference import load_model
from segment_anything import build_sam, SamPredictor 
import spaces
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap

DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# GroundingDINO config and checkpoint
GROUNDING_DINO_CONFIG_PATH = "./GroundingDINO_SwinB.cfg.py"
GROUNDING_DINO_CHECKPOINT_PATH = "./groundingdino_swinb_cogcoor.pth"

# Segment-Anything checkpoint
SAM_ENCODER_VERSION = "vit_h"
SAM_CHECKPOINT_PATH = "./sam_vit_h_4b8939.pth"

# Building GroundingDINO inference model
groundingdino_model  = load_model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH, device=DEVICE)
# Building SAM Model and SAM Predictor
sam = build_sam(checkpoint=SAM_CHECKPOINT_PATH)
sam.to(device=DEVICE)
sam_predictor = SamPredictor(sam)

def transform_image(image_pil):

    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    image, _ = transform(image_pil, None)  # 3, h, w
    return image


def get_grounding_output(model, image, caption, box_threshold=0.25, text_threshold=0.25, with_logits=True):
    caption = caption.lower()
    caption = caption.strip()
    if not caption.endswith("."):
        caption = caption + "."

    with torch.no_grad():
        outputs = model(image[None], captions=[caption])
    logits = outputs["pred_logits"].cpu().sigmoid()[0]  # (nq, 256)
    boxes = outputs["pred_boxes"].cpu()[0]  # (nq, 4)
    logits.shape[0]

    # filter output
    logits_filt = logits.clone()
    boxes_filt = boxes.clone()
    filt_mask = logits_filt.max(dim=1)[0] > box_threshold
    logits_filt = logits_filt[filt_mask]  # num_filt, 256
    boxes_filt = boxes_filt[filt_mask]  # num_filt, 4
    logits_filt.shape[0]

    # get phrase
    tokenlizer = model.tokenizer
    tokenized = tokenlizer(caption)
    # build pred
    pred_phrases = []
    scores = []
    for logit, box in zip(logits_filt, boxes_filt):
        pred_phrase = get_phrases_from_posmap(
            logit > text_threshold, tokenized, tokenlizer)
        if with_logits:
            pred_phrases.append(
                pred_phrase + f"({str(logit.max().item())[:4]})")
        else:
            pred_phrases.append(pred_phrase)
        scores.append(logit.max().item())

    return boxes_filt, torch.Tensor(scores), pred_phrases

@spaces.GPU
def run_local(image, label):
    global groundingdino_model, sam_predictor


    image_pil = image.convert("RGB")
    transformed_image = transform_image(image_pil)


    boxes_filt, scores, pred_phrases = get_grounding_output(
        groundingdino_model, transformed_image, label
    )

    size = image_pil.size

    # process boxes
    H, W = size[1], size[0]
    for i in range(boxes_filt.size(0)):
        boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
        boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
        boxes_filt[i][2:] += boxes_filt[i][:2]

    boxes_filt = boxes_filt.cpu()

    # nms

    nms_idx = torchvision.ops.nms(
        boxes_filt, scores, 0.8).numpy().tolist()
    boxes_filt = boxes_filt[nms_idx]
    pred_phrases = [pred_phrases[idx] for idx in nms_idx]


    image = np.array(image_pil)
    sam_predictor.set_image(image)

    transformed_boxes = sam_predictor.transform.apply_boxes_torch(
        boxes_filt, image.shape[:2]).to(DEVICE)

    masks, _, _ = sam_predictor.predict_torch(
        point_coords=None,
        point_labels=None,
        boxes=transformed_boxes,
        multimask_output=False,
    )
    result_mask = masks[0][0].cpu().numpy()


    result_mask = Image.fromarray(result_mask)

    return [result_mask]





with gr.Blocks() as demo:

    gr.Markdown("# Segment")

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(sources='upload', type="pil", height=512)

            text_prompt = gr.Textbox(label="Label")

        with gr.Column():
            gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery", height=512)

    run_local_button = gr.Button(value="Run")

    run_local_button.click(fn=run_local,
                            inputs=[input_image, text_prompt],
                            outputs=[gallery]
                            )
demo.launch()