NuclearDataTools / NDfilter.py
Wanlau
NDplot
a4ef31a
import json
import os
import re
import copy
import pandas as pd
## 半衰期单位转换字典
HL_UNITS = {"fs": 1e-15, "ps": 1e-12, "ns": 1e-9, "us": 1e-6, "ms": 1e-3, "s": 1, "m": 60, "h": 3600, "d": 86400, "y": 31557600, "ky": 31557600e3, "My": 31557600e6, "Gy": 31557600e9}
nuclides_data_path = "data/nndc_nudat_data_export.json"
def nuclidesFilterZNA(nuclides_data, Z_min=None, Z_max=None, Z_oe_idx=0, N_min=None, N_max=None, N_oe_idx=0, A_min=None, A_max=None, A_oe_idx=0):
filtered = {}
for name, data in nuclides_data.items():
fh = True
if not (Z_min is None or data['z'] >= Z_min):
fh = False
if not (Z_max is None or data['z'] <= Z_max):
fh = False
if not (N_min is None or data['n'] >= N_min):
fh = False
if not (N_max is None or data['n'] <= N_max):
fh = False
if not (A_min is None or data['a'] >= A_min):
fh = False
if not (A_max is None or data['a'] <= A_max):
fh = False
if Z_oe_idx == 1:
if data['z'] % 2 == 0:
fh = False
elif Z_oe_idx == 2:
if data['z'] % 2 == 1:
fh = False
if N_oe_idx == 1:
if data['n'] % 2 == 0:
fh = False
elif N_oe_idx == 2:
if data['n'] % 2 == 1:
fh = False
if A_oe_idx == 1:
if data['a'] % 2 == 0:
fh = False
elif A_oe_idx == 2:
if data['a'] % 2 == 1:
fh = False
if fh:
filtered[name] = data
return filtered
def nuclidesFilterHalflife(nuclides_data, hl_min_sec=0, hl_max_sec=None):
filtered = {}
if hl_min_sec == None:
if hl_max_sec == None:
for name, data in nuclides_data.items():
if "levels" in data:
for level in data["levels"]:
if "halflife" in level:
if level["halflife"]["value"] == "STABLE":
filtered[name] = data
break
else:
if hl_max_sec == None:
for name, data in nuclides_data.items():
if "levels" in data:
for level in data["levels"]:
if "halflife" in level:
if level["halflife"]["value"] == "STABLE":
filtered[name] = data
break
else:
if not level["halflife"]["unit"] in HL_UNITS:
break
hl_sec = level["halflife"]["value"] * HL_UNITS[level["halflife"]["unit"]]
if hl_sec > hl_min_sec:
filtered[name] = data
break
else:
for name, data in nuclides_data.items():
if "levels" in data:
for level in data["levels"]:
if "halflife" in level:
if level["halflife"]["value"] == "STABLE":
pass
else:
if not level["halflife"]["unit"] in HL_UNITS:
break
hl_sec = level["halflife"]["value"] * HL_UNITS[level["halflife"]["unit"]]
if hl_sec > hl_min_sec and hl_sec < hl_max_sec:
filtered[name] = data
break
return filtered
def nuclidesFilterDecayModes(nuclides_data, dm_enable_idx, decay_modes):
filtered = {}
nuclides_decayModes = {}
for name, data in nuclides_data.items():
decayModes = []
if "levels" in data:
for level in data["levels"]:
if "decayModes" in level:
for decayData in level["decayModes"]["observed"]:
if not decayData["mode"] in decayModes:
decayModes.append(decayData["mode"])
nuclides_decayModes[name] = copy.deepcopy(decayModes)
decay_modes_series = pd.Series(decay_modes)
## nndc导出的数据里有两处写作"β⁻"了
replace_dict = {"β⁻": "B-"}
for name, decayModes in nuclides_decayModes.items():
nuclide_decayModes_series = pd.Series(decayModes)
nuclide_decayModes_series = nuclide_decayModes_series.replace(replace_dict)
if dm_enable_idx == 1:
if decay_modes_series.isin(nuclide_decayModes_series).all():
filtered[name] = nuclides_data[name]
elif dm_enable_idx == 2:
if decay_modes_series.isin(nuclide_decayModes_series).any():
filtered[name] = nuclides_data[name]
return filtered
def nuclidesSearchingNom(nuclides_data, nuclide_nom):
nuclide = None
element = None
nuclide_A = None
if not re.fullmatch(rf"([A-Za-z]+)([-_|]*)([0-9]+)", nuclide_nom) == None:
match00 = re.fullmatch(rf"([A-Za-z]+)([-_|]*)([0-9]+)", nuclide_nom)
element = match00.group(1)
nuclide_A = match00.group(3)
elif not re.fullmatch(rf"([0-9]+)([-_|]*)([A-Za-z]+)", nuclide_nom) == None:
match00 = re.fullmatch(rf"([0-9]+)([-_|]*)([A-Za-z]+)", nuclide_nom)
element = match00.group(3)
nuclide_A = match00.group(1)
if not (element == None or nuclide_A == None):
if not element in ("n", "N"):
if len(element) == 1:
element = element.upper()
else:
element = element[:1].upper() + element[1:].lower()
while nuclide_A.startswith("0"):
nuclide_A = nuclide_A[1:]
nom = nuclide_A + element
if nom in nuclides_data:
nuclide = nuclides_data[nom]
return nuclide
def nuclidesSearchingZN(nuclides_data, Z_in=0, N_in=0):
nuclide = None
for nom, data in nuclides_data.items():
if data["z"] == Z_in and data["n"] == N_in:
nuclide = data
break
return nuclide
def nuclidesSearchingZA(nuclides_data, Z_in=0, A_in=0):
nuclide = None
for nom, data in nuclides_data.items():
if data["z"] == Z_in and data["a"] == A_in:
nuclide = data
break
return nuclide
def nuclidesSearchingNA(nuclides_data, N_in=0, A_in=0):
nuclide = None
for nom, data in nuclides_data.items():
if data["n"] == N_in and data["a"] == A_in:
nuclide = data
break
return nuclide
def nuclideData_dict2dataframe(nuclideData_dict):
nom = nuclideData_dict["name"]
z = nuclideData_dict["z"]
n = nuclideData_dict["n"]
a = nuclideData_dict["a"]
data = []
for level in nuclideData_dict["levels"]:
## 自旋宇称
spinParity = None
if "spinParity" in level:
spinParity = level["spinParity"]
## 质量过剩
massExcess = None
massExcess_unit = None
massExcess_unc = None
if not "massExcess" in level:
pass
else:
massExcess = level["massExcess"]["unit"]
massExcess_unit = level["massExcess"]["value"]
massExcess_unc = level["massExcess"]["uncertainty"]
## 半衰期
hl = None
hl_unit = None
hl_unc = None
if not "halflife" in level:
pass
elif level["halflife"]["value"] == "STABLE":
pass
else:
hl = level["halflife"]["value"]
hl_unit = level["halflife"]["unit"]
if level["halflife"]["uncertainty"]["type"] == "asymmetric":
hl_unc = "+" + str(level["halflife"]["uncertainty"]["upperLimit"]) + " -" + str(level["halflife"]["uncertainty"]["lowerLimit"])
elif level["halflife"]["uncertainty"]["type"] == "approximation":
hl_unc = "≈"
elif level["halflife"]["uncertainty"]["type"] == "limit":
if level["halflife"]["uncertainty"]["limitType"] == "lower":
if level["halflife"]["uncertainty"]["isInclusive"] == True:
hl_unc = "≥"
else:
hl_unc = ">"
elif level["halflife"]["uncertainty"]["limitType"] == "upper":
if level["halflife"]["uncertainty"]["isInclusive"] == True:
hl_unc = "≤"
else:
hl_unc = "<"
else:
hl_unc = level["halflife"]["uncertainty"]["value"]
## 衰变模式
if not "decayModes" in level:
data.append((nom, z, n, a, level["energy"]["value"], level["energy"]["unit"], spinParity, massExcess, massExcess_unit, massExcess_unc, hl, hl_unit, hl_unc, None, None))
elif len(level["decayModes"]["observed"]) == 0:
data.append((nom, z, n, a, level["energy"]["value"], level["energy"]["unit"], spinParity, massExcess, massExcess_unit, massExcess_unc, hl, hl_unit, hl_unc, None, None))
else:
for decayMode in level["decayModes"]["observed"]:
data.append((nom, z, n, a, level["energy"]["value"], level["energy"]["unit"], spinParity, massExcess, massExcess_unit, massExcess_unc, hl, hl_unit, hl_unc, decayMode["mode"], decayMode["value"]))
nuclideDataframe = pd.DataFrame(data, columns=["Nuclide", "Z", "N", "A", "E(level)", "E(level) unit", "Spin Parity", "Mass Excess", "Mass Excess unit", "Mass Excess uncertainty", "Halflife", "Halflife unit", "Halflife uncertainty", "Decay Mode", "Branch Ratio"])
return nuclideDataframe
def nuclideData_dict2dataframeCompact(nuclideData_dict):
data = []
for level in nuclideData_dict["levels"]:
## 自旋宇称
spinParity = None
if "spinParity" in level:
spinParity = level["spinParity"]
## 质量过剩
massExcess = None
if not "massExcess" in level:
pass
else:
massExcess = level["massExcess"]["formats"]["NDS"]+" "+level["massExcess"]["unit"]
## 半衰期
hl = None
if not "halflife" in level:
pass
elif level["halflife"]["value"] == "STABLE":
hl = "STABLE"
else:
hl = level["halflife"]["formats"]["NDS"]+" "+level["halflife"]["unit"]
## 衰变模式
if not "decayModes" in level:
data.append((str(level["energy"]["value"])+" "+level["energy"]["unit"], spinParity, massExcess, hl, None))
elif len(level["decayModes"]["observed"]) == 0:
data.append((str(level["energy"]["value"])+" "+level["energy"]["unit"], spinParity, massExcess, hl, None))
else:
decayModes = []
for decayMode in level["decayModes"]["observed"]:
decayModes.append((decayMode["mode"], decayMode["value"]))
decayModeDF = pd.DataFrame(decayModes, columns=["Decay Mode", "Branch Ratio"])
data.append((str(level["energy"]["value"])+" "+level["energy"]["unit"], spinParity, massExcess, hl, decayModeDF))
nuclideDataframe = pd.DataFrame(data, columns=["E(level)", "Spin Parity", "Mass Excess", "Halflife", "Decay Modes"])
return nuclideDataframe
def nuclidesClassifyHalflife(data_path):
with open (data_path,'r', encoding='utf-8') as file:
nuclides_data = json.load(file)
classified = []
for nom, data in nuclides_data.items():
z = data["z"]
n = data["n"]
hl_type = "UN"
if len(data["levels"]) == 0:
hl_type = "UN"
elif not "halflife" in data["levels"][0]:
hl_type = "UN"
elif data["levels"][0]["halflife"]["value"] == "STABLE":
hl_type = "ST"
elif not data["levels"][0]["halflife"]["unit"] in HL_UNITS:
hl_type = "SU"
else:
hl_sec = data["levels"][0]["halflife"]["value"] * HL_UNITS[data["levels"][0]["halflife"]["unit"]]
if hl_sec < 1e-7:
hl_type = "l100ns"
elif hl_sec < 1e-6:
hl_type = "100ns"
elif hl_sec < 1e-5:
hl_type = "1us"
elif hl_sec < 1e-4:
hl_type = "10us"
elif hl_sec < 1e-3:
hl_type = "100us"
elif hl_sec < 1e-2:
hl_type = "1ms"
elif hl_sec < 1e-1:
hl_type = "10ms"
elif hl_sec < 1:
hl_type = "100ms"
elif hl_sec < 10:
hl_type = "1s"
elif hl_sec < 100:
hl_type = "10s"
elif hl_sec < 1e3:
hl_type = "100s"
elif hl_sec < 1e4:
hl_type = "1ks"
elif hl_sec < 1e5:
hl_type = "10ks"
elif hl_sec < 1e7:
hl_type = "100ks"
elif hl_sec < 1e10:
hl_type = "10Ms"
elif hl_sec < 1e15:
hl_type = "1e10s"
else:
hl_type = "1e15s"
classified.append({"z":z, "n":n, "type":hl_type})
return classified
def nuclidesClassifyDecayMode(data_path):
with open (data_path,'r', encoding='utf-8') as file:
nuclides_data = json.load(file)
classified = []
for nom, data in nuclides_data.items():
z = data["z"]
n = data["n"]
dm_type = "UNKNOWN"
if len(data["levels"]) == 0:
dm_type = "UNKNOWN"
elif not "decayModes" in data["levels"][0]:
dm_type = "UNKNOWN"
if "halflife" in data["levels"][0]:
if data["levels"][0]["halflife"]["value"] == "STABLE":
dm_type = "STABLE"
else:
decay_modes = data["levels"][0]["decayModes"]["observed"] + data["levels"][0]["decayModes"]["predicted"]
if len(decay_modes) == 0:
dm_type = "UNKNOWN"
else:
## 据分支比排序
dms1 = []
dms2 = []
dmsd = {}
dmsd1 = []
for decay_mode in decay_modes:
if not "value" in decay_mode:
dms2.append(decay_mode)
else:
dmsd[decay_mode["mode"]] = decay_mode
dmsd1.append((decay_mode["value"], decay_mode["mode"]))
dmsdf = pd.DataFrame(dmsd1, columns=["value", "mode"])
dmsdf.sort_values(by="value", ascending=False, inplace=True)
for mode in dmsdf["mode"]:
dms1.append(dmsd[mode])
dms = dms1 + dms2
dm_type = dms[0]["mode"]
classified.append({"z":z, "n":n, "type":dm_type})
return classified
##test