Spaces:
Sleeping
Sleeping
File size: 15,414 Bytes
cc6830a a4ef31a cc6830a a4ef31a cc6830a a4ef31a cc6830a a4ef31a cc6830a a4ef31a cc6830a a4ef31a cc6830a a4ef31a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import json
import os
import re
import copy
import pandas as pd
## 半衰期单位转换字典
HL_UNITS = {"fs": 1e-15, "ps": 1e-12, "ns": 1e-9, "us": 1e-6, "ms": 1e-3, "s": 1, "m": 60, "h": 3600, "d": 86400, "y": 31557600, "ky": 31557600e3, "My": 31557600e6, "Gy": 31557600e9}
nuclides_data_path = "data/nndc_nudat_data_export.json"
def nuclidesFilterZNA(nuclides_data, Z_min=None, Z_max=None, Z_oe_idx=0, N_min=None, N_max=None, N_oe_idx=0, A_min=None, A_max=None, A_oe_idx=0):
filtered = {}
for name, data in nuclides_data.items():
fh = True
if not (Z_min is None or data['z'] >= Z_min):
fh = False
if not (Z_max is None or data['z'] <= Z_max):
fh = False
if not (N_min is None or data['n'] >= N_min):
fh = False
if not (N_max is None or data['n'] <= N_max):
fh = False
if not (A_min is None or data['a'] >= A_min):
fh = False
if not (A_max is None or data['a'] <= A_max):
fh = False
if Z_oe_idx == 1:
if data['z'] % 2 == 0:
fh = False
elif Z_oe_idx == 2:
if data['z'] % 2 == 1:
fh = False
if N_oe_idx == 1:
if data['n'] % 2 == 0:
fh = False
elif N_oe_idx == 2:
if data['n'] % 2 == 1:
fh = False
if A_oe_idx == 1:
if data['a'] % 2 == 0:
fh = False
elif A_oe_idx == 2:
if data['a'] % 2 == 1:
fh = False
if fh:
filtered[name] = data
return filtered
def nuclidesFilterHalflife(nuclides_data, hl_min_sec=0, hl_max_sec=None):
filtered = {}
if hl_min_sec == None:
if hl_max_sec == None:
for name, data in nuclides_data.items():
if "levels" in data:
for level in data["levels"]:
if "halflife" in level:
if level["halflife"]["value"] == "STABLE":
filtered[name] = data
break
else:
if hl_max_sec == None:
for name, data in nuclides_data.items():
if "levels" in data:
for level in data["levels"]:
if "halflife" in level:
if level["halflife"]["value"] == "STABLE":
filtered[name] = data
break
else:
if not level["halflife"]["unit"] in HL_UNITS:
break
hl_sec = level["halflife"]["value"] * HL_UNITS[level["halflife"]["unit"]]
if hl_sec > hl_min_sec:
filtered[name] = data
break
else:
for name, data in nuclides_data.items():
if "levels" in data:
for level in data["levels"]:
if "halflife" in level:
if level["halflife"]["value"] == "STABLE":
pass
else:
if not level["halflife"]["unit"] in HL_UNITS:
break
hl_sec = level["halflife"]["value"] * HL_UNITS[level["halflife"]["unit"]]
if hl_sec > hl_min_sec and hl_sec < hl_max_sec:
filtered[name] = data
break
return filtered
def nuclidesFilterDecayModes(nuclides_data, dm_enable_idx, decay_modes):
filtered = {}
nuclides_decayModes = {}
for name, data in nuclides_data.items():
decayModes = []
if "levels" in data:
for level in data["levels"]:
if "decayModes" in level:
for decayData in level["decayModes"]["observed"]:
if not decayData["mode"] in decayModes:
decayModes.append(decayData["mode"])
nuclides_decayModes[name] = copy.deepcopy(decayModes)
decay_modes_series = pd.Series(decay_modes)
## nndc导出的数据里有两处写作"β⁻"了
replace_dict = {"β⁻": "B-"}
for name, decayModes in nuclides_decayModes.items():
nuclide_decayModes_series = pd.Series(decayModes)
nuclide_decayModes_series = nuclide_decayModes_series.replace(replace_dict)
if dm_enable_idx == 1:
if decay_modes_series.isin(nuclide_decayModes_series).all():
filtered[name] = nuclides_data[name]
elif dm_enable_idx == 2:
if decay_modes_series.isin(nuclide_decayModes_series).any():
filtered[name] = nuclides_data[name]
return filtered
def nuclidesSearchingNom(nuclides_data, nuclide_nom):
nuclide = None
element = None
nuclide_A = None
if not re.fullmatch(rf"([A-Za-z]+)([-_|]*)([0-9]+)", nuclide_nom) == None:
match00 = re.fullmatch(rf"([A-Za-z]+)([-_|]*)([0-9]+)", nuclide_nom)
element = match00.group(1)
nuclide_A = match00.group(3)
elif not re.fullmatch(rf"([0-9]+)([-_|]*)([A-Za-z]+)", nuclide_nom) == None:
match00 = re.fullmatch(rf"([0-9]+)([-_|]*)([A-Za-z]+)", nuclide_nom)
element = match00.group(3)
nuclide_A = match00.group(1)
if not (element == None or nuclide_A == None):
if not element in ("n", "N"):
if len(element) == 1:
element = element.upper()
else:
element = element[:1].upper() + element[1:].lower()
while nuclide_A.startswith("0"):
nuclide_A = nuclide_A[1:]
nom = nuclide_A + element
if nom in nuclides_data:
nuclide = nuclides_data[nom]
return nuclide
def nuclidesSearchingZN(nuclides_data, Z_in=0, N_in=0):
nuclide = None
for nom, data in nuclides_data.items():
if data["z"] == Z_in and data["n"] == N_in:
nuclide = data
break
return nuclide
def nuclidesSearchingZA(nuclides_data, Z_in=0, A_in=0):
nuclide = None
for nom, data in nuclides_data.items():
if data["z"] == Z_in and data["a"] == A_in:
nuclide = data
break
return nuclide
def nuclidesSearchingNA(nuclides_data, N_in=0, A_in=0):
nuclide = None
for nom, data in nuclides_data.items():
if data["n"] == N_in and data["a"] == A_in:
nuclide = data
break
return nuclide
def nuclideData_dict2dataframe(nuclideData_dict):
nom = nuclideData_dict["name"]
z = nuclideData_dict["z"]
n = nuclideData_dict["n"]
a = nuclideData_dict["a"]
data = []
for level in nuclideData_dict["levels"]:
## 自旋宇称
spinParity = None
if "spinParity" in level:
spinParity = level["spinParity"]
## 质量过剩
massExcess = None
massExcess_unit = None
massExcess_unc = None
if not "massExcess" in level:
pass
else:
massExcess = level["massExcess"]["unit"]
massExcess_unit = level["massExcess"]["value"]
massExcess_unc = level["massExcess"]["uncertainty"]
## 半衰期
hl = None
hl_unit = None
hl_unc = None
if not "halflife" in level:
pass
elif level["halflife"]["value"] == "STABLE":
pass
else:
hl = level["halflife"]["value"]
hl_unit = level["halflife"]["unit"]
if level["halflife"]["uncertainty"]["type"] == "asymmetric":
hl_unc = "+" + str(level["halflife"]["uncertainty"]["upperLimit"]) + " -" + str(level["halflife"]["uncertainty"]["lowerLimit"])
elif level["halflife"]["uncertainty"]["type"] == "approximation":
hl_unc = "≈"
elif level["halflife"]["uncertainty"]["type"] == "limit":
if level["halflife"]["uncertainty"]["limitType"] == "lower":
if level["halflife"]["uncertainty"]["isInclusive"] == True:
hl_unc = "≥"
else:
hl_unc = ">"
elif level["halflife"]["uncertainty"]["limitType"] == "upper":
if level["halflife"]["uncertainty"]["isInclusive"] == True:
hl_unc = "≤"
else:
hl_unc = "<"
else:
hl_unc = level["halflife"]["uncertainty"]["value"]
## 衰变模式
if not "decayModes" in level:
data.append((nom, z, n, a, level["energy"]["value"], level["energy"]["unit"], spinParity, massExcess, massExcess_unit, massExcess_unc, hl, hl_unit, hl_unc, None, None))
elif len(level["decayModes"]["observed"]) == 0:
data.append((nom, z, n, a, level["energy"]["value"], level["energy"]["unit"], spinParity, massExcess, massExcess_unit, massExcess_unc, hl, hl_unit, hl_unc, None, None))
else:
for decayMode in level["decayModes"]["observed"]:
data.append((nom, z, n, a, level["energy"]["value"], level["energy"]["unit"], spinParity, massExcess, massExcess_unit, massExcess_unc, hl, hl_unit, hl_unc, decayMode["mode"], decayMode["value"]))
nuclideDataframe = pd.DataFrame(data, columns=["Nuclide", "Z", "N", "A", "E(level)", "E(level) unit", "Spin Parity", "Mass Excess", "Mass Excess unit", "Mass Excess uncertainty", "Halflife", "Halflife unit", "Halflife uncertainty", "Decay Mode", "Branch Ratio"])
return nuclideDataframe
def nuclideData_dict2dataframeCompact(nuclideData_dict):
data = []
for level in nuclideData_dict["levels"]:
## 自旋宇称
spinParity = None
if "spinParity" in level:
spinParity = level["spinParity"]
## 质量过剩
massExcess = None
if not "massExcess" in level:
pass
else:
massExcess = level["massExcess"]["formats"]["NDS"]+" "+level["massExcess"]["unit"]
## 半衰期
hl = None
if not "halflife" in level:
pass
elif level["halflife"]["value"] == "STABLE":
hl = "STABLE"
else:
hl = level["halflife"]["formats"]["NDS"]+" "+level["halflife"]["unit"]
## 衰变模式
if not "decayModes" in level:
data.append((str(level["energy"]["value"])+" "+level["energy"]["unit"], spinParity, massExcess, hl, None))
elif len(level["decayModes"]["observed"]) == 0:
data.append((str(level["energy"]["value"])+" "+level["energy"]["unit"], spinParity, massExcess, hl, None))
else:
decayModes = []
for decayMode in level["decayModes"]["observed"]:
decayModes.append((decayMode["mode"], decayMode["value"]))
decayModeDF = pd.DataFrame(decayModes, columns=["Decay Mode", "Branch Ratio"])
data.append((str(level["energy"]["value"])+" "+level["energy"]["unit"], spinParity, massExcess, hl, decayModeDF))
nuclideDataframe = pd.DataFrame(data, columns=["E(level)", "Spin Parity", "Mass Excess", "Halflife", "Decay Modes"])
return nuclideDataframe
def nuclidesClassifyHalflife(data_path):
with open (data_path,'r', encoding='utf-8') as file:
nuclides_data = json.load(file)
classified = []
for nom, data in nuclides_data.items():
z = data["z"]
n = data["n"]
hl_type = "UN"
if len(data["levels"]) == 0:
hl_type = "UN"
elif not "halflife" in data["levels"][0]:
hl_type = "UN"
elif data["levels"][0]["halflife"]["value"] == "STABLE":
hl_type = "ST"
elif not data["levels"][0]["halflife"]["unit"] in HL_UNITS:
hl_type = "SU"
else:
hl_sec = data["levels"][0]["halflife"]["value"] * HL_UNITS[data["levels"][0]["halflife"]["unit"]]
if hl_sec < 1e-7:
hl_type = "l100ns"
elif hl_sec < 1e-6:
hl_type = "100ns"
elif hl_sec < 1e-5:
hl_type = "1us"
elif hl_sec < 1e-4:
hl_type = "10us"
elif hl_sec < 1e-3:
hl_type = "100us"
elif hl_sec < 1e-2:
hl_type = "1ms"
elif hl_sec < 1e-1:
hl_type = "10ms"
elif hl_sec < 1:
hl_type = "100ms"
elif hl_sec < 10:
hl_type = "1s"
elif hl_sec < 100:
hl_type = "10s"
elif hl_sec < 1e3:
hl_type = "100s"
elif hl_sec < 1e4:
hl_type = "1ks"
elif hl_sec < 1e5:
hl_type = "10ks"
elif hl_sec < 1e7:
hl_type = "100ks"
elif hl_sec < 1e10:
hl_type = "10Ms"
elif hl_sec < 1e15:
hl_type = "1e10s"
else:
hl_type = "1e15s"
classified.append({"z":z, "n":n, "type":hl_type})
return classified
def nuclidesClassifyDecayMode(data_path):
with open (data_path,'r', encoding='utf-8') as file:
nuclides_data = json.load(file)
classified = []
for nom, data in nuclides_data.items():
z = data["z"]
n = data["n"]
dm_type = "UNKNOWN"
if len(data["levels"]) == 0:
dm_type = "UNKNOWN"
elif not "decayModes" in data["levels"][0]:
dm_type = "UNKNOWN"
if "halflife" in data["levels"][0]:
if data["levels"][0]["halflife"]["value"] == "STABLE":
dm_type = "STABLE"
else:
decay_modes = data["levels"][0]["decayModes"]["observed"] + data["levels"][0]["decayModes"]["predicted"]
if len(decay_modes) == 0:
dm_type = "UNKNOWN"
else:
## 据分支比排序
dms1 = []
dms2 = []
dmsd = {}
dmsd1 = []
for decay_mode in decay_modes:
if not "value" in decay_mode:
dms2.append(decay_mode)
else:
dmsd[decay_mode["mode"]] = decay_mode
dmsd1.append((decay_mode["value"], decay_mode["mode"]))
dmsdf = pd.DataFrame(dmsd1, columns=["value", "mode"])
dmsdf.sort_values(by="value", ascending=False, inplace=True)
for mode in dmsdf["mode"]:
dms1.append(dmsd[mode])
dms = dms1 + dms2
dm_type = dms[0]["mode"]
classified.append({"z":z, "n":n, "type":dm_type})
return classified
##test
|