Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException | |
import os | |
from typing import List, Dict | |
from dotenv import load_dotenv | |
import logging | |
from pathlib import Path | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Qdrant as QdrantVectorStore | |
from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
from langchain_groq import ChatGroq | |
from qdrant_client import QdrantClient | |
from qdrant_client.http.models import Distance, VectorParams | |
from qdrant_client.models import PointIdsList | |
from langgraph.graph import MessagesState, StateGraph | |
from langchain_core.messages import SystemMessage, HumanMessage, ToolMessage | |
from langgraph.prebuilt import ToolNode | |
from langgraph.graph import END | |
from langgraph.prebuilt import tools_condition | |
from langgraph.checkpoint.memory import MemorySaver | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
load_dotenv() | |
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY') | |
GROQ_API_KEY = os.getenv('GROQ_API_KEY') | |
if not GOOGLE_API_KEY or not GROQ_API_KEY: | |
raise ValueError("API keys not set in environment variables") | |
app = FastAPI() | |
class QASystem: | |
def __init__(self): | |
self.vector_store = None | |
self.graph = None | |
self.memory = None | |
self.embeddings = None | |
self.client = None | |
self.pdf_dir = "pdfss" | |
def load_pdf_documents(self): | |
documents = [] | |
pdf_dir = Path(self.pdf_dir) | |
if not pdf_dir.exists(): | |
raise FileNotFoundError(f"PDF directory not found: {self.pdf_dir}") | |
for pdf_path in pdf_dir.glob("*.pdf"): | |
try: | |
loader = PyPDFLoader(str(pdf_path)) | |
documents.extend(loader.load()) | |
logger.info(f"Loaded PDF: {pdf_path}") | |
except Exception as e: | |
logger.error(f"Error loading PDF {pdf_path}: {str(e)}") | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=100 | |
) | |
split_docs = text_splitter.split_documents(documents) | |
logger.info(f"Split documents into {len(split_docs)} chunks") | |
return split_docs | |
def initialize_system(self): | |
try: | |
self.client = QdrantClient(":memory:") | |
try: | |
self.client.get_collection("pdf_data") | |
except Exception: | |
self.client.create_collection( | |
collection_name="pdf_data", | |
vectors_config=VectorParams(size=768, distance=Distance.COSINE), | |
) | |
logger.info("Created new collection: pdf_data") | |
self.embeddings = GoogleGenerativeAIEmbeddings( | |
model="models/embedding-001", | |
google_api_key=GOOGLE_API_KEY | |
) | |
self.vector_store = QdrantVectorStore( | |
client=self.client, | |
collection_name="pdf_data", | |
embeddings=self.embeddings, | |
) | |
documents = self.load_pdf_documents() | |
if documents: | |
try: | |
points = self.client.scroll(collection_name="pdf_data", limit=100)[0] | |
if points: | |
self.client.delete( | |
collection_name="pdf_data", | |
points_selector=PointIdsList( | |
points=[p.id for p in points] | |
) | |
) | |
except Exception as e: | |
logger.error(f"Error clearing vectors: {str(e)}") | |
self.vector_store.add_documents(documents) | |
logger.info(f"Added {len(documents)} documents to vector store") | |
llm = ChatGroq( | |
model="llama3-8b-8192", | |
api_key=GROQ_API_KEY, | |
temperature=0.7 | |
) | |
graph_builder = StateGraph(MessagesState) | |
# Define a retrieval node that fetches relevant docs | |
def retrieve_docs(state: MessagesState): | |
# Get the most recent human message | |
human_messages = [m for m in state["messages"] if m.type == "human"] | |
if not human_messages: | |
return {"messages": state["messages"]} | |
user_query = human_messages[-1].content | |
logger.info(f"Retrieving documents for query: {user_query}") | |
# Query the vector store | |
try: | |
retrieved_docs = self.vector_store.similarity_search(user_query, k=3) | |
# Create tool messages for each retrieved document | |
tool_messages = [] | |
for i, doc in enumerate(retrieved_docs): | |
tool_messages.append( | |
ToolMessage( | |
content=f"Document {i+1}: {doc.page_content}", | |
tool_call_id=f"retrieval_{i}" | |
) | |
) | |
logger.info(f"Retrieved {len(tool_messages)} relevant documents") | |
return {"messages": state["messages"] + tool_messages} | |
except Exception as e: | |
logger.error(f"Error retrieving documents: {str(e)}") | |
return {"messages": state["messages"]} | |
# Updated generate function that uses retrieved documents | |
def generate(state: MessagesState): | |
# Extract retrieved documents (tool messages) | |
tool_messages = [m for m in state["messages"] if m.type == "tool"] | |
# Collect context from retrieved documents | |
if tool_messages: | |
context = "\n".join([m.content for m in tool_messages]) | |
logger.info(f"Using context from {len(tool_messages)} retrieved documents") | |
else: | |
context = "No specific mountain bicycle documentation available." | |
logger.info("No relevant documents retrieved, using default context") | |
system_prompt = ( | |
"You are an AI assistant embedded within the Interactive Electronic Technical Manual (IETM) for Mountain Cycles. " | |
"Always provide accurate responses with references to provided data. " | |
"If the user query is not technical-specific, still respond from a IETM perspective." | |
f"\n\nContext from mountain bicycle documentation:\n{context}" | |
) | |
# Get all messages excluding tool messages to avoid redundancy | |
human_and_ai_messages = [m for m in state["messages"] if m.type != "tool"] | |
# Create the full message history for the LLM | |
messages = [SystemMessage(content=system_prompt)] + human_and_ai_messages | |
logger.info(f"Sending query to LLM with {len(messages)} messages") | |
# Generate the response | |
response = llm.invoke(messages) | |
return {"messages": state["messages"] + [response]} | |
# Add nodes to the graph | |
graph_builder.add_node("retrieve_docs", retrieve_docs) | |
graph_builder.add_node("generate", generate) | |
# Set the flow of the graph | |
graph_builder.set_entry_point("retrieve_docs") | |
graph_builder.add_edge("retrieve_docs", "generate") | |
graph_builder.add_edge("generate", END) | |
self.memory = MemorySaver() | |
self.graph = graph_builder.compile(checkpointer=self.memory) | |
return True | |
except Exception as e: | |
logger.error(f"System initialization error: {str(e)}") | |
return False | |
def process_query(self, query: str) -> Dict[str, str]: | |
"""Process a query and return a single final response""" | |
try: | |
# Generate a unique thread ID for production use | |
# For simplicity, using a fixed ID here | |
thread_id = "abc123" | |
# Use invoke instead of stream to get only the final result | |
final_state = self.graph.invoke( | |
{"messages": [HumanMessage(content=query)]}, | |
config={"configurable": {"thread_id": thread_id}} | |
) | |
# Extract only the last AI message from the final state | |
ai_messages = [m for m in final_state["messages"] if m.type == "ai"] | |
if ai_messages: | |
# Return only the last AI message | |
return { | |
'content': ai_messages[-1].content, | |
'type': ai_messages[-1].type | |
} | |
return { | |
'content': "No response generated", | |
'type': 'error' | |
} | |
except Exception as e: | |
logger.error(f"Query processing error: {str(e)}") | |
return { | |
'content': f"Query processing error: {str(e)}", | |
'type': 'error' | |
} | |
qa_system = QASystem() | |
if qa_system.initialize_system(): | |
logger.info("QA System Initialized Successfully") | |
else: | |
raise RuntimeError("Failed to initialize QA System") | |
async def query_api(query: str): | |
"""API endpoint that returns a single response for a query""" | |
response = qa_system.process_query(query) | |
return {"response": response} |