File size: 9,809 Bytes
dbce286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab11098
d05ce95
ab11098
 
 
 
dbce286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab11098
dbce286
 
804a7ea
dbce286
 
 
 
ab11098
dbce286
 
ab11098
dbce286
 
 
 
 
 
 
 
ab11098
 
 
 
dbce286
 
 
 
 
 
 
ab11098
dbce286
 
 
 
 
 
 
 
ab11098
dbce286
ab11098
 
dbce286
ab11098
dbce286
 
 
 
 
ab11098
dbce286
 
ab11098
 
 
 
 
 
 
 
 
 
 
 
dbce286
 
 
 
ab11098
dbce286
 
 
ab11098
0b10d8a
dbce286
d05ce95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab11098
d05ce95
ab11098
d05ce95
 
 
 
 
 
 
 
 
 
b04e992
dbce286
804a7ea
d05ce95
 
 
dbce286
b04e992
d05ce95
 
 
 
 
 
 
 
 
ab11098
d05ce95
b04e992
d05ce95
 
ab11098
 
d05ce95
 
 
dbce286
ab11098
 
dbce286
 
 
 
 
 
 
fe9fc71
 
dbce286
fe9fc71
 
 
d05ce95
fe9fc71
 
dbce286
d05ce95
fe9fc71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d05ce95
dbce286
 
fe9fc71
 
 
 
dbce286
 
 
 
 
 
 
 
ab11098
fe9fc71
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from fastapi import FastAPI, HTTPException
import os
from typing import List, Dict
from dotenv import load_dotenv
import logging
from pathlib import Path

from langchain_community.document_loaders import PyPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Qdrant as QdrantVectorStore
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_groq import ChatGroq
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from qdrant_client.models import PointIdsList

from langgraph.graph import MessagesState, StateGraph
from langchain_core.messages import SystemMessage, HumanMessage, ToolMessage
from langgraph.prebuilt import ToolNode
from langgraph.graph import END
from langgraph.prebuilt import tools_condition
from langgraph.checkpoint.memory import MemorySaver

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

load_dotenv()
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
GROQ_API_KEY = os.getenv('GROQ_API_KEY')

if not GOOGLE_API_KEY or not GROQ_API_KEY:
    raise ValueError("API keys not set in environment variables")

app = FastAPI()

class QASystem:
    def __init__(self):
        self.vector_store = None
        self.graph = None
        self.memory = None
        self.embeddings = None
        self.client = None
        self.pdf_dir = "pdfss"

    def load_pdf_documents(self):
        documents = []
        pdf_dir = Path(self.pdf_dir)
        
        if not pdf_dir.exists():
            raise FileNotFoundError(f"PDF directory not found: {self.pdf_dir}")
        
        for pdf_path in pdf_dir.glob("*.pdf"):
            try:
                loader = PyPDFLoader(str(pdf_path))
                documents.extend(loader.load())
                logger.info(f"Loaded PDF: {pdf_path}")
            except Exception as e:
                logger.error(f"Error loading PDF {pdf_path}: {str(e)}")

        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=1000,
            chunk_overlap=100
        )
        split_docs = text_splitter.split_documents(documents)
        logger.info(f"Split documents into {len(split_docs)} chunks")
        return split_docs

    def initialize_system(self):
        try:
            self.client = QdrantClient(":memory:")
            
            try:
                self.client.get_collection("pdf_data")
            except Exception:
                self.client.create_collection(
                    collection_name="pdf_data",
                    vectors_config=VectorParams(size=768, distance=Distance.COSINE),
                )
                logger.info("Created new collection: pdf_data")
            
            self.embeddings = GoogleGenerativeAIEmbeddings(
                model="models/embedding-001",
                google_api_key=GOOGLE_API_KEY
            )
            
            self.vector_store = QdrantVectorStore(
                client=self.client,
                collection_name="pdf_data",
                embeddings=self.embeddings,
            )
            
            documents = self.load_pdf_documents()
            if documents:
                try:
                    points = self.client.scroll(collection_name="pdf_data", limit=100)[0]
                    if points:
                        self.client.delete(
                            collection_name="pdf_data",
                            points_selector=PointIdsList(
                                points=[p.id for p in points]
                            )
                        )
                except Exception as e:
                    logger.error(f"Error clearing vectors: {str(e)}")
                
                self.vector_store.add_documents(documents)
                logger.info(f"Added {len(documents)} documents to vector store")

            llm = ChatGroq(
                model="llama3-8b-8192", 
                api_key=GROQ_API_KEY,
                temperature=0.7
            )
            
            graph_builder = StateGraph(MessagesState)

            # Define a retrieval node that fetches relevant docs
            def retrieve_docs(state: MessagesState):
                # Get the most recent human message
                human_messages = [m for m in state["messages"] if m.type == "human"]
                if not human_messages:
                    return {"messages": state["messages"]}
                
                user_query = human_messages[-1].content
                logger.info(f"Retrieving documents for query: {user_query}")
                
                # Query the vector store
                try:
                    retrieved_docs = self.vector_store.similarity_search(user_query, k=3)
                    
                    # Create tool messages for each retrieved document
                    tool_messages = []
                    for i, doc in enumerate(retrieved_docs):
                        tool_messages.append(
                            ToolMessage(
                                content=f"Document {i+1}: {doc.page_content}",
                                tool_call_id=f"retrieval_{i}"
                            )
                        )
                    
                    logger.info(f"Retrieved {len(tool_messages)} relevant documents")
                    return {"messages": state["messages"] + tool_messages}
                
                except Exception as e:
                    logger.error(f"Error retrieving documents: {str(e)}")
                    return {"messages": state["messages"]}

            # Updated generate function that uses retrieved documents
            def generate(state: MessagesState):
                # Extract retrieved documents (tool messages)
                tool_messages = [m for m in state["messages"] if m.type == "tool"]
                
                # Collect context from retrieved documents
                if tool_messages:
                    context = "\n".join([m.content for m in tool_messages])
                    logger.info(f"Using context from {len(tool_messages)} retrieved documents")
                else:
                    context = "No specific mountain bicycle documentation available."
                    logger.info("No relevant documents retrieved, using default context")

                system_prompt = (
                    "You are an AI assistant embedded within the Interactive Electronic Technical Manual (IETM) for Mountain Cycles. "
                    "Always provide accurate responses with references to provided data. "
                    "If the user query is not technical-specific, still respond from a IETM perspective."
                    f"\n\nContext from mountain bicycle documentation:\n{context}"
                )

                # Get all messages excluding tool messages to avoid redundancy
                human_and_ai_messages = [m for m in state["messages"] if m.type != "tool"]
                
                # Create the full message history for the LLM
                messages = [SystemMessage(content=system_prompt)] + human_and_ai_messages
                
                logger.info(f"Sending query to LLM with {len(messages)} messages")
                
                # Generate the response
                response = llm.invoke(messages)
                return {"messages": state["messages"] + [response]}

            # Add nodes to the graph
            graph_builder.add_node("retrieve_docs", retrieve_docs)
            graph_builder.add_node("generate", generate)
            
            # Set the flow of the graph
            graph_builder.set_entry_point("retrieve_docs")
            graph_builder.add_edge("retrieve_docs", "generate")
            graph_builder.add_edge("generate", END)
            
            self.memory = MemorySaver()
            self.graph = graph_builder.compile(checkpointer=self.memory)
            return True

        except Exception as e:
            logger.error(f"System initialization error: {str(e)}")
            return False

    def process_query(self, query: str) -> Dict[str, str]:
        """Process a query and return a single final response"""
        try:
            # Generate a unique thread ID for production use
            # For simplicity, using a fixed ID here
            thread_id = "abc123"
            
            # Use invoke instead of stream to get only the final result
            final_state = self.graph.invoke(
                {"messages": [HumanMessage(content=query)]},
                config={"configurable": {"thread_id": thread_id}}
            )
            
            # Extract only the last AI message from the final state
            ai_messages = [m for m in final_state["messages"] if m.type == "ai"]
            
            if ai_messages:
                # Return only the last AI message
                return {
                    'content': ai_messages[-1].content,
                    'type': ai_messages[-1].type
                }
            return {
                'content': "No response generated",
                'type': 'error'
            }
            
        except Exception as e:
            logger.error(f"Query processing error: {str(e)}")
            return {
                'content': f"Query processing error: {str(e)}",
                'type': 'error'
            }

qa_system = QASystem()
if qa_system.initialize_system():
    logger.info("QA System Initialized Successfully")
else:
    raise RuntimeError("Failed to initialize QA System")

@app.post("/query")
async def query_api(query: str):
    """API endpoint that returns a single response for a query"""
    response = qa_system.process_query(query)
    return {"response": response}