Spaces:
Sleeping
Sleeping
File size: 9,809 Bytes
dbce286 ab11098 d05ce95 ab11098 dbce286 ab11098 dbce286 804a7ea dbce286 ab11098 dbce286 ab11098 dbce286 ab11098 dbce286 ab11098 dbce286 ab11098 dbce286 ab11098 dbce286 ab11098 dbce286 ab11098 dbce286 ab11098 dbce286 ab11098 dbce286 ab11098 0b10d8a dbce286 d05ce95 ab11098 d05ce95 ab11098 d05ce95 b04e992 dbce286 804a7ea d05ce95 dbce286 b04e992 d05ce95 ab11098 d05ce95 b04e992 d05ce95 ab11098 d05ce95 dbce286 ab11098 dbce286 fe9fc71 dbce286 fe9fc71 d05ce95 fe9fc71 dbce286 d05ce95 fe9fc71 d05ce95 dbce286 fe9fc71 dbce286 ab11098 fe9fc71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
from fastapi import FastAPI, HTTPException
import os
from typing import List, Dict
from dotenv import load_dotenv
import logging
from pathlib import Path
from langchain_community.document_loaders import PyPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Qdrant as QdrantVectorStore
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_groq import ChatGroq
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from qdrant_client.models import PointIdsList
from langgraph.graph import MessagesState, StateGraph
from langchain_core.messages import SystemMessage, HumanMessage, ToolMessage
from langgraph.prebuilt import ToolNode
from langgraph.graph import END
from langgraph.prebuilt import tools_condition
from langgraph.checkpoint.memory import MemorySaver
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
load_dotenv()
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
if not GOOGLE_API_KEY or not GROQ_API_KEY:
raise ValueError("API keys not set in environment variables")
app = FastAPI()
class QASystem:
def __init__(self):
self.vector_store = None
self.graph = None
self.memory = None
self.embeddings = None
self.client = None
self.pdf_dir = "pdfss"
def load_pdf_documents(self):
documents = []
pdf_dir = Path(self.pdf_dir)
if not pdf_dir.exists():
raise FileNotFoundError(f"PDF directory not found: {self.pdf_dir}")
for pdf_path in pdf_dir.glob("*.pdf"):
try:
loader = PyPDFLoader(str(pdf_path))
documents.extend(loader.load())
logger.info(f"Loaded PDF: {pdf_path}")
except Exception as e:
logger.error(f"Error loading PDF {pdf_path}: {str(e)}")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=100
)
split_docs = text_splitter.split_documents(documents)
logger.info(f"Split documents into {len(split_docs)} chunks")
return split_docs
def initialize_system(self):
try:
self.client = QdrantClient(":memory:")
try:
self.client.get_collection("pdf_data")
except Exception:
self.client.create_collection(
collection_name="pdf_data",
vectors_config=VectorParams(size=768, distance=Distance.COSINE),
)
logger.info("Created new collection: pdf_data")
self.embeddings = GoogleGenerativeAIEmbeddings(
model="models/embedding-001",
google_api_key=GOOGLE_API_KEY
)
self.vector_store = QdrantVectorStore(
client=self.client,
collection_name="pdf_data",
embeddings=self.embeddings,
)
documents = self.load_pdf_documents()
if documents:
try:
points = self.client.scroll(collection_name="pdf_data", limit=100)[0]
if points:
self.client.delete(
collection_name="pdf_data",
points_selector=PointIdsList(
points=[p.id for p in points]
)
)
except Exception as e:
logger.error(f"Error clearing vectors: {str(e)}")
self.vector_store.add_documents(documents)
logger.info(f"Added {len(documents)} documents to vector store")
llm = ChatGroq(
model="llama3-8b-8192",
api_key=GROQ_API_KEY,
temperature=0.7
)
graph_builder = StateGraph(MessagesState)
# Define a retrieval node that fetches relevant docs
def retrieve_docs(state: MessagesState):
# Get the most recent human message
human_messages = [m for m in state["messages"] if m.type == "human"]
if not human_messages:
return {"messages": state["messages"]}
user_query = human_messages[-1].content
logger.info(f"Retrieving documents for query: {user_query}")
# Query the vector store
try:
retrieved_docs = self.vector_store.similarity_search(user_query, k=3)
# Create tool messages for each retrieved document
tool_messages = []
for i, doc in enumerate(retrieved_docs):
tool_messages.append(
ToolMessage(
content=f"Document {i+1}: {doc.page_content}",
tool_call_id=f"retrieval_{i}"
)
)
logger.info(f"Retrieved {len(tool_messages)} relevant documents")
return {"messages": state["messages"] + tool_messages}
except Exception as e:
logger.error(f"Error retrieving documents: {str(e)}")
return {"messages": state["messages"]}
# Updated generate function that uses retrieved documents
def generate(state: MessagesState):
# Extract retrieved documents (tool messages)
tool_messages = [m for m in state["messages"] if m.type == "tool"]
# Collect context from retrieved documents
if tool_messages:
context = "\n".join([m.content for m in tool_messages])
logger.info(f"Using context from {len(tool_messages)} retrieved documents")
else:
context = "No specific mountain bicycle documentation available."
logger.info("No relevant documents retrieved, using default context")
system_prompt = (
"You are an AI assistant embedded within the Interactive Electronic Technical Manual (IETM) for Mountain Cycles. "
"Always provide accurate responses with references to provided data. "
"If the user query is not technical-specific, still respond from a IETM perspective."
f"\n\nContext from mountain bicycle documentation:\n{context}"
)
# Get all messages excluding tool messages to avoid redundancy
human_and_ai_messages = [m for m in state["messages"] if m.type != "tool"]
# Create the full message history for the LLM
messages = [SystemMessage(content=system_prompt)] + human_and_ai_messages
logger.info(f"Sending query to LLM with {len(messages)} messages")
# Generate the response
response = llm.invoke(messages)
return {"messages": state["messages"] + [response]}
# Add nodes to the graph
graph_builder.add_node("retrieve_docs", retrieve_docs)
graph_builder.add_node("generate", generate)
# Set the flow of the graph
graph_builder.set_entry_point("retrieve_docs")
graph_builder.add_edge("retrieve_docs", "generate")
graph_builder.add_edge("generate", END)
self.memory = MemorySaver()
self.graph = graph_builder.compile(checkpointer=self.memory)
return True
except Exception as e:
logger.error(f"System initialization error: {str(e)}")
return False
def process_query(self, query: str) -> Dict[str, str]:
"""Process a query and return a single final response"""
try:
# Generate a unique thread ID for production use
# For simplicity, using a fixed ID here
thread_id = "abc123"
# Use invoke instead of stream to get only the final result
final_state = self.graph.invoke(
{"messages": [HumanMessage(content=query)]},
config={"configurable": {"thread_id": thread_id}}
)
# Extract only the last AI message from the final state
ai_messages = [m for m in final_state["messages"] if m.type == "ai"]
if ai_messages:
# Return only the last AI message
return {
'content': ai_messages[-1].content,
'type': ai_messages[-1].type
}
return {
'content': "No response generated",
'type': 'error'
}
except Exception as e:
logger.error(f"Query processing error: {str(e)}")
return {
'content': f"Query processing error: {str(e)}",
'type': 'error'
}
qa_system = QASystem()
if qa_system.initialize_system():
logger.info("QA System Initialized Successfully")
else:
raise RuntimeError("Failed to initialize QA System")
@app.post("/query")
async def query_api(query: str):
"""API endpoint that returns a single response for a query"""
response = qa_system.process_query(query)
return {"response": response} |