Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
import os
|
3 |
+
from typing import List, Dict
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import logging
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
from langchain_community.document_loaders import PyPDFLoader
|
9 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
10 |
+
from langchain_community.vectorstores import Qdrant as QdrantVectorStore
|
11 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
12 |
+
from langchain_groq import ChatGroq
|
13 |
+
from qdrant_client import QdrantClient
|
14 |
+
from qdrant_client.http.models import Distance, VectorParams
|
15 |
+
from qdrant_client.models import PointIdsList
|
16 |
+
|
17 |
+
from langgraph.graph import MessagesState, StateGraph
|
18 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
19 |
+
from langgraph.prebuilt import ToolNode
|
20 |
+
from langgraph.graph import END
|
21 |
+
from langgraph.prebuilt import tools_condition
|
22 |
+
from langgraph.checkpoint.memory import MemorySaver
|
23 |
+
|
24 |
+
logging.basicConfig(level=logging.INFO)
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
load_dotenv()
|
28 |
+
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
|
29 |
+
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
|
30 |
+
|
31 |
+
if not GOOGLE_API_KEY or not GROQ_API_KEY:
|
32 |
+
raise ValueError("API keys not set in environment variables")
|
33 |
+
|
34 |
+
app = FastAPI()
|
35 |
+
|
36 |
+
class QASystem:
|
37 |
+
def __init__(self):
|
38 |
+
self.vector_store = None
|
39 |
+
self.graph = None
|
40 |
+
self.memory = None
|
41 |
+
self.embeddings = None
|
42 |
+
self.client = None
|
43 |
+
self.pdf_dir = "pdfs"
|
44 |
+
|
45 |
+
def load_pdf_documents(self):
|
46 |
+
documents = []
|
47 |
+
pdf_dir = Path(self.pdf_dir)
|
48 |
+
|
49 |
+
if not pdf_dir.exists():
|
50 |
+
raise FileNotFoundError(f"PDF directory not found: {self.pdf_dir}")
|
51 |
+
|
52 |
+
for pdf_path in pdf_dir.glob("*.pdf"):
|
53 |
+
try:
|
54 |
+
loader = PyPDFLoader(str(pdf_path))
|
55 |
+
documents.extend(loader.load())
|
56 |
+
logger.info(f"Loaded PDF: {pdf_path}")
|
57 |
+
except Exception as e:
|
58 |
+
logger.error(f"Error loading PDF {pdf_path}: {str(e)}")
|
59 |
+
|
60 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
61 |
+
chunk_size=1000,
|
62 |
+
chunk_overlap=100
|
63 |
+
)
|
64 |
+
split_docs = text_splitter.split_documents(documents)
|
65 |
+
logger.info(f"Split documents into {len(split_docs)} chunks")
|
66 |
+
return split_docs
|
67 |
+
|
68 |
+
def initialize_system(self):
|
69 |
+
try:
|
70 |
+
self.client = QdrantClient(":memory:")
|
71 |
+
|
72 |
+
try:
|
73 |
+
self.client.get_collection("pdf_data")
|
74 |
+
except Exception:
|
75 |
+
self.client.create_collection(
|
76 |
+
collection_name="pdf_data",
|
77 |
+
vectors_config=VectorParams(size=768, distance=Distance.COSINE),
|
78 |
+
)
|
79 |
+
logger.info("Created new collection: pdf_data")
|
80 |
+
|
81 |
+
self.embeddings = GoogleGenerativeAIEmbeddings(
|
82 |
+
model="models/embedding-001",
|
83 |
+
google_api_key=GOOGLE_API_KEY
|
84 |
+
)
|
85 |
+
|
86 |
+
self.vector_store = QdrantVectorStore(
|
87 |
+
client=self.client,
|
88 |
+
collection_name="pdf_data",
|
89 |
+
embeddings=self.embeddings,
|
90 |
+
)
|
91 |
+
|
92 |
+
documents = self.load_pdf_documents()
|
93 |
+
if documents:
|
94 |
+
try:
|
95 |
+
points = self.client.scroll(collection_name="pdf_data", limit=100)[0]
|
96 |
+
if points:
|
97 |
+
self.client.delete(
|
98 |
+
collection_name="pdf_data",
|
99 |
+
points_selector=PointIdsList(
|
100 |
+
points=[p.id for p in points]
|
101 |
+
)
|
102 |
+
)
|
103 |
+
except Exception as e:
|
104 |
+
logger.error(f"Error clearing vectors: {str(e)}")
|
105 |
+
|
106 |
+
self.vector_store.add_documents(documents)
|
107 |
+
logger.info(f"Added {len(documents)} documents to vector store")
|
108 |
+
|
109 |
+
llm = ChatGroq(
|
110 |
+
model="llama3-8b-8192",
|
111 |
+
api_key=GROQ_API_KEY,
|
112 |
+
temperature=0.7
|
113 |
+
)
|
114 |
+
|
115 |
+
graph_builder = StateGraph(MessagesState)
|
116 |
+
|
117 |
+
def query_or_respond(state: MessagesState):
|
118 |
+
response = llm.invoke(state["messages"])
|
119 |
+
return {"messages": [response]}
|
120 |
+
|
121 |
+
def generate(state: MessagesState):
|
122 |
+
recent_tools = [m for m in reversed(state["messages"]) if m.type == "tool"][::-1]
|
123 |
+
|
124 |
+
system_prompt = (
|
125 |
+
"You are a senior legal assistant with knowledge in the Indian legal and judiciary system."
|
126 |
+
" Provide direct concise summarized answers in 5 sentences based on the following context:\n\n"
|
127 |
+
f"{' '.join(m.content for m in recent_tools)}"
|
128 |
+
)
|
129 |
+
messages = [SystemMessage(content=system_prompt)] + [
|
130 |
+
m for m in state["messages"]
|
131 |
+
if m.type in ("human", "system") or (m.type == "ai" and not m.tool_calls)
|
132 |
+
]
|
133 |
+
|
134 |
+
response = llm.invoke(messages)
|
135 |
+
return {"messages": [response]}
|
136 |
+
|
137 |
+
graph_builder.add_node("query_or_respond", query_or_respond)
|
138 |
+
graph_builder.add_node("generate", generate)
|
139 |
+
|
140 |
+
graph_builder.set_entry_point("query_or_respond")
|
141 |
+
graph_builder.add_edge("query_or_respond", "generate")
|
142 |
+
graph_builder.add_edge("generate", END)
|
143 |
+
|
144 |
+
self.memory = MemorySaver()
|
145 |
+
self.graph = graph_builder.compile(checkpointer=self.memory)
|
146 |
+
return True
|
147 |
+
|
148 |
+
except Exception as e:
|
149 |
+
logger.error(f"System initialization error: {str(e)}")
|
150 |
+
return False
|
151 |
+
|
152 |
+
def process_query(self, query: str) -> List[Dict[str, str]]:
|
153 |
+
try:
|
154 |
+
responses = []
|
155 |
+
for step in self.graph.stream(
|
156 |
+
{"messages": [HumanMessage(content=query)]},
|
157 |
+
stream_mode="values",
|
158 |
+
config={"configurable": {"thread_id": "abc123"}}
|
159 |
+
):
|
160 |
+
if step["messages"]:
|
161 |
+
responses.append({
|
162 |
+
'content': step["messages"][-1].content,
|
163 |
+
'type': step["messages"][-1].type
|
164 |
+
})
|
165 |
+
return responses
|
166 |
+
except Exception as e:
|
167 |
+
logger.error(f"Query processing error: {str(e)}")
|
168 |
+
return [{'content': f"Query processing error: {str(e)}", 'type': 'error'}]
|
169 |
+
|
170 |
+
qa_system = QASystem()
|
171 |
+
if qa_system.initialize_system():
|
172 |
+
logger.info("QA System Initialized Successfully")
|
173 |
+
else:
|
174 |
+
raise RuntimeError("Failed to initialize QA System")
|
175 |
+
|
176 |
+
@app.post("/query")
|
177 |
+
async def query_api(query: str):
|
178 |
+
responses = qa_system.process_query(query)
|
179 |
+
return {"responses": responses}
|